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Chair: Kenneth R. Siarkiewicz (Organizer), Co-Chair: Donald R. Pflug (Co-Organizer) 

0820 Frameworks-Future Paradigm for CEM Analysis 

0840 REF CEM Data Dictionary 

0900 Air Force Research & Engineering Framework Control Panel 

0920 Continued Application of the Research and Engineering Framework (REF) at Raytheon 

The Innovative Research Testbed: A PC-Based High Performance Computing and 
Web-Based Collaboratory for Computational Electromagnetics 

K.R. Siarkiewicz 

T. Wharton & J.A. Evans 

D.M. Hailatt & J. A. Evans 

J. LaBelle, B. Hartman 
H.Wright, Y.Chang, 
R. Abrams 

D.M. Leskiw, G. Ingersoll 
T. Vidoni & R. Redmond 

Xlll 



TUESDAY MORNING 17 MARCH 1998 

SESSION 1: CEM ANALYSIS AND APPLICATION WITHIN AN ENGINEERING ENVIRONMENT (cont) 

1020 

1040 

1100 

1120 

1200 

SESSI 

0820 

0840 

0900 

0920 

0940 

1000 

1020 

1040 

1100 

1120 

Illustrating the Application of Expert Systems to Computational Electromagnetics 
Modeling and Simulation 

Some Present and Future Aspects of the Quality of Solution in Computational Electromagnetics 

On the Use of Computational Electromagnetics in the Radar Cross Section Measurement 
Calibration Process 

Radar Calibration at Low Frequencies Using a Triangular Trihedral Comer Reflector 

LUNCH 

N 2: FINITE-DIFFERENCE TIME-DOMAIN APPLICATIONS    (Parallel with Sessions 1 & 3) 
Chain John Beggs (Organizer), Co-Chair: Melinda Piket-May 

Time Domain Analysis of Small Multi-Sector Monopole Yagi-Uda Array Antenna 
Mounted on a Fi     inite Ground Plane Using FDTD Method 

Antenna Performance Calculation in Lossy Media with FDTD Method 

Far-Zone Transformation in FDTD for VHF-band SAR-image Simulations 

FDTD Simulations Used to Correct for Ground Effects in Aircraft Testing 

Validation of FDTD-Computed Handset Patterns by Measurement 

A.L.S. Drozd, T.W. Blocher 
C.E. Carroll, Jr., & J.M. Allen 

D.R. Pflug 

K.C. Hill & W.D. Wood, Jr. 

C.Y. Shen 

T. Maruyama, K. Uehara, 
T. Hori, K.. Kagoshima 

M. Cai & N. Ljepojevic 

T. Martin & L. Ulander 

G. Eriksson & U. Thibblin 

C.W. Trueman, S.J. Kubina, 
J.E. Roy, W.R. Lauber, 
M. Vall-llossera 

BREAK 

FDTD Analysis of Flip Chip Interconnects 

FDTD Analysis of the Celestron-8 Telescope 

Modifying a Graphically-Based FDTD Simulation for Parallel Processing 

A Time Domain Method for High Frequency Problems Exploiting the Whitney Complex 

Treatment of Boundaries in Multiresolution Based FDTD Multigrid 

LUNCH 

A Z. Elsherbeni, 
V. Rodriguez-Pereyra, 
C.E. Smith 

R.R. DeLyser 

G. Haussmann, M. Piket-May 
K. Thomas 

A. Arkko, T. Tarhasaari 
L. Kettunen 

K. Goverdhanam, E. Tentzeris 
L.P.B. Katehi 

SESSION 3: APPLICATION OF ANALYTIC AND COMPUTATIONAL METHODS TO THE MODELING OF ELECTROMAGNETIC 
MATERIALS (Parallel with Sessions 1 & 2) 
Chair: Rudy Diaz (Organizer), Co-Chair: David H. Y. Yang 

0820       Computing Dispersion Relations and Radiation Spectra in Photonic Band Gap Materials by Plane     T. Suzuki & P.K. L. Yu 
Wave Expansion Method 

0840       Waveguides in Photonic Band Gap Materials 

0900       Is There a Relationship Between a Random and an Ordered Composite Mixture? 
- STUDENT PAPER CONTEST - 

0920       An Analytic Framework for the Modeling of Effective Media 

0940       Finite Grain Boundary Effects for Magnetic Materials: Tunneling and Intergrain Gaps 

1000        BREAK 

M.M. Sigalas, R. Biswas 
K.M. Ho, CM. Soukoulis 
D.D. Crouch 

W.M. Merrill, S.A. Kyriazidou 
N.G. Alexopoulos 

R.E. Diaz 

G.G. Bush 

XIV 



TUESDAY MORNING 17 MARCH 1998 

SESSION 3: APPLICATION OF ANALYTIC AND COMPUTATIONAL METHODS TO THE MODEUNG 
MATERIALS (cant) 

1020       Numerical Computation of the Complex Dielectric Permittivity: FFT-Based HilbertTransform 
Approximation of the Kramers-Kronig Relations - STUDENT PAPER CONTEST - 

1040       Rayleigh Analysis of Novel Dense Medium Exhibiting Narrow-Band Transparency Window 

1200        LUNCH 

TUESDAY AFTERNOON 17 MARCH 1998 

INTERACTIVE POSTER SESSION 
1300-1530 

VENDOR EXHIBITS 
1300-1900 

WINE AND CHEESE BUFFET 
1500-1700 

SESSION 4: INTERACTIVE POSTER SESSION 

Finite Difference Formulation - Expanding the Capabilities 

Time and Frequency Domain Numerical Modeling of Outbound and Standing Power from 
Perpendicularly Oriented, Electrically Small TM Dipoles 

Efficient Analysis of Large Two-dimensional Arbitrarily Shaped Finite Gratings for 
Quantum Well Infrared Photo-detectors 

Forward and Backward Propagation Algorithms Applied to the Electromagnetic 
Scattering by an Impenetrable Obstacle: A Progress Report 

Analysis of Broad Wall Slots Excited by Tuning Screws 

Closed-Form Expression of the Arc-Length of the Toroidal/Helical Equilibrium Orbit 

Asymptotic Techiques in Naval Ship Design 

A BCG-FFT Solution of Scattering and Radiation by Large Finite Arrays of Microstrip 
Antennas 

Analytic Solution for Low-Frequency Electric Induction in an Equatorially Stratified Sphere 

Parallelizing Computational Electromagnetics Code Using the Parallel Virtual 
Machine: Examples 

SAF Analysis Codes for Predicting the Electromagnetic Effectiveness of Antennas Enclosed 
in Composite Structures 

Some Concentrated Solutions on Hemholtz Equation with Nonlocal Nonlinearity 

Hysteresis and Eddy Currents in Ferromagnetic Media 

Electrical Circuit Analysis Considering Hysteresis in Coil Cores 

A Paradigm for Proving the Convexity Properties of Slowness Curves 

On the Strict-Convexity of the Slowness Surfaces for the Fastest Bulk-Acoustic-Waves in 
Piezoelectric and Piezoelectromagnetic Media 

Solving EMC Problems Using the FDTD Method 

TUESDAY EVENING 17 MARCH 1998 BOD DINNER 

OF ELECTROMAGNETIC 

F. Castro & B. Nabet 

S.A. Kryiazidou, R.E. Diaz 
N.G. Alexopoulos 

Ballroom, Herrmann Hall 

Ballroom, Herrmann Hall 

Ballroom, Herrmann Hall 

Ballroom, Herrmann Hall 

K. Davey 

G. Liu, C.A. Grimes 
K.G. Ong 

V. Jandhyala, D. Sengupta 
B. Shanker, E. Michielssen 
M. Feng, & G. Stillman 

G.F. Crosta 

T. Azar & R.Coren 

R.A. Speciale 

R. Routier & R. Burkholder 

C-Fu Wang, F. Ling, 
J-M Jin 

T.W. Dawson 

E. Skochinski & S. Regarajan 

B.J. Cown, J.P. Estrada 
R. Router 

Y.N. Cherkashin 
V.A. Eremenko 

J. Fuzi & A. Ivanyi 

J. Fuzi 

A.R. Baghai-Wadji 

A.R. Baghai-Wadji 

F. Gisin & 2. Pantic-Tanner 

XV 



WEDNESDAY MORNING 18 MARCH 1998 

0730 • 0800 CONTINENTAL BREAKFAST 

SESSION 5: TLM MODELING AND APPLICATIONS   (Parallel with Sessions 6,7 & 8)) 
Chair: Wolfgang Hoefer (Organizer), Co-Chair: Peter Russer 

0820       A Hybrid Time Domain TLM-lntegral Equation Method tor Solution of Radiation Problems 

0840       Comparison of Symmetric Condense TLM, Yee FDTD and Integer Lattice Gas Automata 
Solutions for a Problem Containing a Sharp Metallic Edge 

0900 Some Observations on Stubs, Boundaries and Parity Effects in TLM Models 

0920 Modelling of Dispersive Media in TLM Using the Propagator Approach 

0940 Characterization of Quasiplanar Structures Using the TLM Method 

1000 BREAK 

1020 Generation of Lumped Element Equivalent Circuits from Time-Domain Scattering Signals 

1040 TLM Analysis of an Optical Sensor 

1100 TLM Modeling and TDR Validation of Soil Moisture Probe for Environmental Sensing 

1120       TLM Analysis of the Celestron-8 Telescope 

1140       Near to Far Field Transformation via Parabolic Equation - STUDENT PAPER CONTEST 

1200        LUNCH 

SESSION 6: FREQUENCY-DOMAIN FAST ALGORITHMS (Parallel with Sessions 5,7 & 8) 
Chair: Jiming Song (Organizer), Co-Chain Weng Cho Chew (Co-Organizer) 

0820       Recent Advances in the Numerical Solution of Integral Equations Applied to EM Scattering 
from Terrain 

0840       Solution of Combined-Field Integral Equation Using Multi-Level Fast Multipole Algorithm 
for Scattering by Homogeneous Bodies 

0900       Comparisons of FMM and AIM Compression Schemes in Finite Element - Boundary 
Integral Implementations for Antenna Modeling 

0920       High-Order Nystrom Discretization for Faster, More Accurate Scattering Calculations 

0940       Large Scale Computing with the Fast Illinois Solver Code -Requirements Scaling Properties 

1000 BREAK 

1020       A Fast Technique for Determining Electromagnetic and Acoustic Wave Behavior in 
Inhomogeneous Media 

1040       Rapid Analysis of Perfectly Conducting and Penetrable Quasi-Planar Structures with the 
Steepest Descent Fast Multipole Method 

1100       Iterative Solution Strategies in Adaptive Integral Method (AIM) 

1120       A Fast Moment Method Matrix Solver 

1140       Vector Parabolic Equation Technique for the RCS Calculations 

1200 LUNCH 

Glasgow Courtyard 

L. Pierantoni, S. Lindenmeier 
P. Russer 

N. Simons, R. Siushansian 
J. LoVetri, G. Bridges 
M. Cuhaci 

D. de Cogan & C. Kun 

J. Rebel & P. Russer 

O. Pertz, U. Müller & A. Beyer 

T. Mangold & P. Russer 

R.R. DeLyser 

G. Tardioli, M. Righi, L. Cascio 
W.J.R. Hoefer, & R. McFarlane 

R.R. DeLyser 

A.N. Kurokhtin, Y.V. Kopylov, 
A.V. Popov, & A.V. Vinogradov 

P. Cullen & C. Brennan 

X.Q. Sheng, J.M. Jin, Ü.M. Song 
W.C. Chew, & C.C. Lu 

K. Sertel, D.S. Filipovic 
S. Bindiganavale, & J.L. Volakis 

L.S. Canino, J.J. Ottusch 
M.A. Stalzer, J.L. Visher 
S.M. Wandzura 

J. Song* W.C.Chew 

M.A. Jensen 

V. Jandhyala, E. Michielssen 
B. Shanker, & W.C. Chew 

E. Bleszynski, M. Bleszynski 
T. Jaroszewicz 

F.X. Canning & K. Rogovin 

A.A. Zaporozhets & M. F. Levy 

XVI 



WEDNESDAY MORNING 18 MARCH 1998 

SESSION 7: ELECTROMAGNETICS IN BIOLOGICAL AND MEDICAL APPUCATIONS (Parallel with Sessions 5,6 & 8) 
Chain Cynthia Furse (Organizer), Co-Chair: Maria A. Stuchly 

0820       EM Interaction Evaluation of Handset Antennas and Human Head: A Hybrid Technique 

0840       Comparison of RGFM and FDTD for Electromagnetic-Tissue Interaction Problems 

0900       Isolated vs. in situ Human Heart Dosimetry under Low Frequency Magnetic Exposure 

0920       Faster Than Fourier - Ultra-Efficient Time-to-Frequency Domain Conversions for FDTD Applied 
to Bioelectromagnetic Dosimetry 

0940       Modelling of Antennas in Close Proximity to Biological Tissues Using the TLM Method 

K.W. Kim & Y. Rahmat-Samii 

M.A. Jensen 

T.W. Dawson, K. Caputa 
M.A. Stuchly 

CM. Furse 

J. Paul, C. Christopoulos 
D.W.P. Thomas 

1000 

SESSION 8: ADVANCES IN PERFECTLY MATCHED LAYERS (PML) (Parallel with Sessions 5,6, & 7) 
Chain Weng Cho Chew, Co-Chair: Qing Huo Liu 

1020       Conformal Perfectly Matched Layer 

1040       Stability Analysis of Cartesian, Cylindrical and Spherical Perfectly Matched Layers 

1100       A Unified Approach to PML Absorbing Media 

1120       Comparison of the Performance of the PML and the Liao Absorbing Boundary Formulation 

1140       A Uniaxial PML Implementation for a Fourth Order Dispersion-Optimized FDTD Scheme 

1200       LUNCH 

WEDNESDAY AFTERNOON 18 MARCH 1998 

SESSION 9: 

F.L. Teixeira & W.C. Chew 

F.L. Teixeira & W.C. Chew 

D.H. Werner & R. Mittra 

M. Vall-llossera, C.W. Trueman 

G. Haussmann & M. Piket-May 

1320 

1340 

VISUALIZATION IN CEM (Parallel with Sessions 10,11 & 12)) 
Chain Janice Karty (Organizer), Co-Chair: Stanley J. Kubina 

Plate Scattering Visualization: Images, Near Fields, Currents, and Far Field Patterns 

Visualization Aids for Effective Aircraft Antenna Simulations 

1400 Visualization of Radiation from a Spiral Antenna Using EM-ANIMATE 

1420 Evolution of an Antenna Training Aid Using Electromagnetic Visualisation 

1440 The NEC-BSC Workbench: A Companion Graphical Interface Tool 

1500 BREAK 

1520 A New Tool to Assist Use of Legacy Programs 

1540 Visual EMag: A 2-D Electromagnetic Simulator for Undergraduates 

1600 Exploring Electromagnetic Physics Using Thin-Wire Time-Domain (TWTD) Modeling 

SESSION 10: 

J. Shaeffer & K. Horn 

S.J. Kubina, C.W. Trueman 
Q. Luu, D. Gaudine 

R.A. Peariman, M.R. Axe 
J.M. Bomholdt, & J.M. Roedder 

A. Nott & D. Singh 

G.F. Paynter and R.J. Marhefka 

B. Joseph, A. Paboojian, 
S. Woolf, E. Cohen 

D. Gamer, J. Lebaric 
D. Voltmer 

ABCS FOR CEM: THEORETICAL AND IMPLEMENTATION (Parallel with Sessions 9,11 & 12) 
Chair: Peter G. Petropoulos (Organizer), Co-Chair: Omar M. Ramahi 

1320 

1340 

The Concurrent Complementary Operators Method for FDTD Mesh Truncation 

Accurate Boundary Treatments for Maxwell's Equations and Their Computational 
Complexity 

1400       Perfectly Matched Layer Methods in Spherical Coordinates 

O.M. Ramahi 

T. Hagstrom, B.K. Alpert 
L.F. Greengard, S.I. Hariharan 

B. Yang & D. Gottlieb 

XVI1 



WEDNESDAY AFTERNOON 18 MARCH 1998 

SESSION 10: ABCS FOR CEM: THEORETICAL AND IMPLEMENTATION (cant) 

1420       The PML for Maxwell's Equations in Cylindrical and Spherical Coordinates 

1440       A Comparison of the Grate-Keller and Unsplit PML Absorbing Boundary Conditions for 
Maxwell's Equations in Spherical Coordinates 

1500       BREAK 

1520       A Systematic Study of Three PML Absorbing Bo   iundary Conditions Through a Unified 
Formulation in Cylindrical Coordinates 

1540       Preconditioned Generalized Minima! Residual (GMRES) Solver for Domains Truncated 
by Perfectly Matched Layer (PML) Absorbers 

1600       PML Implementation forthe Battie-Lemarie Multiresolution Time-Domain Schemes 

1620       A PML-FDTD Algorithm for General Dispersive Media 

P.G. Petropoulos 

N.V. Kantartzis, 
P.G. Petropoulos, T.D. Tsiboukis 

J.-Q. He & Q.-H. Liu 

Y.Y. Botros&J.L.Volakis 

E. Tentzeris, R. Robertson 
L.P.B. Katehi 

G-X. Fan & Q.H. Liu 

SESSION 11: CEM AND PARAMETER EXTRACTION FOR PACKAGING ANALYSIS (Parallel with Sessions 9,10 & 12) 
Chain Emilie van Deventer (Organizer), Co-Chair: Jose E. Schutt-Aine 

1320 A New Generalized De-embedding Method for Numerical Electromagnetic Analysis 

1340 A Circuit Extraction Approach in PCB Power-Bus Analysis 

1400 Modeling of Conductor and Dielectric Losses in Packages 

1420 Extraction of Effective Capacitance and Inductance of a Power Distribution Structure 
from Numerical Held Data 

1440 Extraction of Equivalent Circuit Parameters of Interconnections Using FDTD and PML 

1500 BREAK 

Y.O. Shlepnev 

H. Shi & J.L. Drewniak 

J. Poltz 

A. Byers, B. Boots 
M. Piket-May, & R. Gravrok 

F. Liu & J.E. Schutt-Aine 

SESSION 12: REDUCED-ORDER MODELING IN ELECTROMAGNETICS (Parallel with Sessions 9,10 & 11) 
Chair: Andreas C. Cangellaris, Co-Chair: R.F. Remis 

The Use of a Correspondence Principle in Reduced-Order Modeling of Electromagnetic 
Wave Fields 

R.F. Remis 
P.M. van den Berg 

1540       The Spectral Lanczos Decomposition Method for Efficient Time-Domain and 
Frequency-Domain Finite-Element Solution of Maxwell's Equations 

1600       Passivity of Discrete Electromagnetic Systems 

1620       Rational Krylov Reduced Order Modeling of Multiscreen Frequency Selective Surfaces - 
- STUDENT PAPER CONTEST - 

WEDNESDAY EVENING 18 MARCH 1998 

1830        NO HOST BAR 

1930        AWARDS BANQUET 

M. Zunoubi, J-M. Jin 
K. Donepudi, & W.C. Chew 

M. Zunoubi, J.-M. Jin 
A.C. Cangellaris & L. Zhao 

D.S. Weile, E. Michielssen 
K. Gallivan 

Terrace Room, Herrmann Half 

La Novia Room, Herrmann Hall 



THURSDAY MORNING 19 MARCH 1998 

0730- 0800            CONTINENTAL BREAKFAST Glasgow Courtyard 

SESSION13:         FINITE ELEMENT METHOD (Parallel with Sessions 14,15 & 16) 
Chair: John R. Brauer, Co-Chair: Jin-Fa Lee 

0820 Comparing High Order Vector Basis Functions J.S. Savage 

0840 Mesh Refinement for Hybrid FEM in the Analysis of Printed Antennas and Arrays J. Gong, D. Bernstein 
S. Wedge 

0900 A Novel, Efficient Algorithm for Scattering from a Complex BOR Using Vector FEM and PML 
- STUDENT PAPER CONTEST- 

A.D. Greenwood & J-M. Jin 

0920 Homogenized Finite Element Model of a Beam Waveguide Resonator Antenna with Over 
One Hundred Coupling Holes 

J.R. Brauer 

0940 A Surface Admittance Formulation for the Transient Modeling of Skin Effect and Eddy 
Current Problems - STUDENT PAPER CONTEST - 

K.N. Wassef & A.F. Peterson 

1000 BREAK 

1020 Verification of Eddy Current Analysis of Engineering Oriented Loss Model (Problem 21) 
Sugiyama 

N. Takahashi, K. Fujiwara, K. 
J. Takehara 

1040 Jacobi-Davidson Algorithm for Modeling Open Domain Lossy Cavities C. Liu & J-F Lee 

1100 Analysis of Electromagnetic Penetration Through Apertures of Shielded Enclosure Using 
Finite Element Method 

B-W. Kim, .-C. Chung 
T-W. Kang 

1120 hp-Adaptive Edge Finite Elements for Maxwell's Equations L. Demkowicz, L. Vardapetyan 
W. Rachowicz 

1200 LUNCH 

SESSION 14:         RECENT ADVANCES IN TIME-DOMAIN TECHNIQUES (Parallel with Sessions 13,15 & 16) 
Chair: Douglas C. Blake, Co-Chain Douglas J. Riley 

0820 An Analysis of Programming Models for Time-Domain CEM Codes on RISC-Based 
Computers 

D.C. Blake & J.S. Shang 

0840 The VOLMAX Transient Electromagnetic Modeling System, Including Sub-Cell Slots and 
Wires on Random Non-Orthogonal Cells 

D.J. Riley & CD. Turner 

0900 Using the Finite Integration Time Domain Technique at Low Frequencies R. Ehmann & T. Weiland 

0920 Modelling Dispersive Media Using the Finite Integration Technique S. Gutschling, H. Kruger, 
T. Weiland 

0940 Transient Analysis of Thin Wire Antennas Mounted on Three-Dimensional Perfectly 
Conducting Bodies 

K. Aygun, A.A. Ergin, 
B. Shanker S.E. Fisher 
E. Michielssen 

1000 BREAK 

1020 A PSTD Algorithm in Cylindrical Coordinates Q.H. Liu & J. Q. He 

1040 On the PSTD Method for Large-Scale Problems Q.H. Liu 

1100 Pseudospectral Time-Domain Modeling of Diffractive Optical Elements J.S. Hesthaven, P.G. Dinesen 
J.P. Lynov 

1120 Transient Analysis of Acoustic Scattering Using Marching-on-in-Time with Plane Wave 
Time Domain Algorithm 

A.A Ergin, B. Shanker 
K. Aygun, & E. Michielssen 

1140 A Two Level Plane Wave Time Domain Algorithm for Fast Analysis of Transient 
Electromagnetic Scattering 

B. Shanker, A.A. Ergin 
K. Ayugun, & E. Michielssen 

1200 LUNCH 

xix 



THURSDAY MORNING 19 MARCH 1998 

SESSION 15: 

0820 

EMI/EMC (Parallel with Sessions 13,14 & 16) 
Chair: Todd Hubing (Organizer), Co-Chair: Bruce Archambeault 

EMC Modeling of Shielded Enclosures with Apertures and Attached Wires in a Real-World 
Environment 

0840       Proposed Standard EMI Modeling Problems for Evaluating Tools which Predict Shielding 
Effectiveness of Metal Enclosures 
i 

0900       A Study in the Proper Design of Grounding for SMPS Converters and the Role of CEM 

0920       Expert System Algorithms for EMC Analysis 

0940       The Electromagnetic Comatibility Characteristics of Buildings in Mobile Radio Waves 
Propagation Channel 

1000        BREAK 

SESSION IE: HYBRID TECHNIQUES (Parallel with Sessions 13,14 & 15) 
Chain Ulrich Jakobus, Co-Chair: William D. Wood, Jr. 

1020       Extension of the MoM/PO Hybrid Technique to Homogeneous Dielectric Bodies 

1040       EMAP5: A 3D Hybrid FEM/MoM Code 

1100       Iterative Coupling of MoM and MMP for the Analysis of Metallic Structures Radiating in 
the Presence of Dielectric Bodies 

1120       A Hybrid Algorithm for Frequency Selective Surface Analysis 

1140      Generalized Networks for Waveguide Step Discontinuities 

1200        LUNCH 

THURSDAY AFTERNOON 19 MARCH 1998 

SESSION 17:        SIGNAL PROCESSING TECHNIQUES IN CEM (Parallel with Sessions 18,19 & 20) 
Chain Douglas H, Werner (Organizer), Co-Chair: Ping L. Werner (Co-Organizer) 

1320       Using Windowed, Adaptive Sampling to Minimize the Number of Freld Values Needed to 
Estimate Radiation and Scattering Patterns 

1340       Spectral Domain Interpolation of Antenna Radiation Patterns Using Model-Based 
Parameter Estimation and Genetic Algorithms 

1400 An Accurate Algorithm for Nonuniform Fast Fourier Transforms (NUFFT) and Its Applications 

1420 A Subspace Approach to Fast Moment Method Scattering Predictions over Limited Sectors 

1440 Application of Biorthogonal B-Spline-Wavelets to Telegrapher's Equations 

1500 BREAK 

1520 NEC Acceleration by the Wavelet Matrix Transform 

1540 Adaptive Segmentation Algorithms for Optimal NEC Modelling of Wire-Grid Structures 

SESSION 18: HF-UHF PRACTICAL ANTENNA TOPICS (Parallel with Sessions 17,19 & 20) 
Chair: W. Perry Wheless, Jr. (Organizer), Co-Chair: Nathan Cohen 

1320       Comparison of Shipboard HF Transmit Fan Characteristics: NEC versus Scale-Model 
Measurements 

1340       NEC Model Results for Shipboard Shielded Crossed Loop Antennas with Scale-Model 
Range Data 

B. Archambeault, K. Chamberlin 
O. Ramahi 

B. Archambeault & O. Ramahi 

R. Perez 

T. Hubing, N. Kashyap 
J. Drewniak, T. Van Doren 
R. DuBroff 

Y. Miyazaki & P. Selormey 

U. Jakobus 

Y. Ji & T. Hubing 

H-O. Ruoss, U. Jakobus 
F.M. Landstorfer 

M. Mongiardo, P. Russer 
M. Dionigi & L.B. Felsen 

R.J. Allard, D.H. Werner 
J.S. Zmyslo, & P.L Werner 

Q.H. Liu & N. Nguyen 

J. Stach 

M. Aidam & P. Russer 

Y.H. Lee&Y. Lu 

Y.H. Lee & Y. Lu 

K. Lysiak & P. Dombowsky 

K. Lysiak 

XX 



THURSDAY AFTERNOON 19 MARCH 1998 

SESSION 18: HF-UHF PRACTICAL ANTENNA TOPICS (cont) 

1400       A Near-Earth and Buried HF Antenna Computer Modeling Program 

1420       Empirical and Numerical Treatment of Electromagnetic Pulse Induced Currents 

1440       Advantages of an Alternate Viewpoint when Designing HF Verticals for 80 and 160 m 

1500        BREAK 

1520       Tower Equivalent Radius 

1540       Simple CP Fractal Loop Array with Parasitic 

1600       NEC4 Analysis of a Fractalized Monofilar Helix in an Axial Mode 

1620       Design of Low Sidelobe Antennas 

1640       EMP Simulation of Near Field Enhancement of Wire Antenna 

W.P Wheless, Jr. & L.T. Wurfe 

M.J. Packer 

R. Sevems 

W.F. Cummins 

N. Cohen 

N. Cohen 

R.W. Hecht 

M. El Hachemi, 
C. Tosser-Roussey 
A. Tosser-Roosey 

SESSION 19: OPTIMIZATION TECHNIQUES FOR ELECTROMAGNETICS (Parallel with Sessions 17,18 & 20) 
Chair: Eric Michielssen (Organizer), Co-Chair: Randy L. Haupt (Co-Organizer) 

1320       Genetic Algorithm Design of the Conical Interdigitated Log-Periodic Antenna 

1340 

1400 

1420 

1440 

1500 

A Comparison of Simple and Complex Genetic Algorithms in Wire Antenna Design 

Array Failure Correction with a Genetic Algorithm 

Backscattering Synthesis From Tapered Resistive Grids 

Obtaining Linear and Circular Apertures with Smooth Amplitude Distributions and 
High Efficiency 

P.D. Mannikko, P.J. O'Brien 
K.W. Ommodt 

B.S. Sandlin & A.J. Terzuoli 

B. Beng, K. Yeo & Y. Lu 

R.L Haupt 

J.A. Rodriguez & F. Ares 

BREAK 

SESSION 20: INTEGRAL EQUATION METHODS AND ERROR CONTROL (Parallel with Sessions 17,18, & 19) 
Chain Goran Eriksson, Co-Chain C. Y. Shen 

1520       Force Calculations and Error Estimates with Boundary Element Methods 

1540       Use of Residual Error Bounds to Obtain Stable Numerical Solutions of a Fredholm Integral 
Equation of the First Kind 

1600       Eigenvalue Studies of Matrices Resulting from EFIE Simulations for Planar Structures 

1620       Iterative Solution of Dense Linear Systems in Electromagnetic Scattering 
Calculations 

1640       EMCP2 A Parallel Boundary Element Software Package Using a Novel 
Parameterisatron Technique 

K. Davey & D. Zheng 

T. Schwengler & E.F. Kuester 

Ü.M. Dunn & H. MacMillan 

J. Rahola 

G. Eriksson & U. Thibblin 

FRIDAY 20 MARCH 1998       FULL-DAY SHORT COURSES 

0830 -1630 "Practical Genetic Algorithms," Randy L. Haupt, University of Nevada, Reno, Reno, NV. Full - day course 

0830-1630. 

0830-1630 

■Application of the Finite-Difference Time-Domain Method to Simulation of Electromagnetic Coupling to the 
Human Body," Cynthia Furse, Utah State University, Logan, UT. Full - day course 
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I. ABSTRACT 

A new implementation of the Complementary Operators Method (COM) for FDTD 
mesh truncation of open-regions is presented. This new implementation, referred 
to as the Concurrent Complementary Operators Method (C-COM) is based on the 
simultaneous application of complementary operators in a single computer run. This 
results in an approximate 50% reduction in the simulation cost over the original 
COM implementation. Numerical experiments are provided to show the flexibility of 
applying the C-COM theory to analytic or numerical boundary operators. 

II. INTRODUCTION 

The Complementary Operators Method (COM) was originally introduced as a mesh 
truncation technique for open region Finite-Difference Time-Domain (FDTD) simula- 
tions [1], [2]. The basic premise of the COM is the cancellation of the first-order reflec- 
tion that arise when the computational domain is terminated with a single-equation 
boundary operator, or Absorbing Boundary Condition (ABC). This cancellation is 
made possible by averaging two independent solutions of the problem. The primary 
strength of the COM is that the cancellation of the first-order reflections takes place 
for any field independent of the wave number, which implies that effective suppres- 
sion of the reflections occur whether the fields are composed of evanescent or purely 
traveling waves. 

The COM requires two independent solutions of the problem, whkh lead to doubling 
the total operation count in comparison to the traditional implementation of ABCs. 
Nevertheless, despite the COM effectiveness, it would still be even more desirable to 
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avoid two independent simulations, since the overhead requirement of the simulation 
is then reduced by one half, and further allows for effective modeling of non-linear 
media [2]. 

In this paper, a new implementation of COM is presented. In this new implemen- 
tation, instead of applying each of the operators in a separate FDTD simulation, the 
complementary operators are applied concurrently. This new scheme is referred to as 
the Concurrent Complementary Operators Method (C-COM). Here, we summarize 
the theory of complementary operators as was originally implemented in the COM 
method. Next, we discuss the implementation and performance of the concurrent 
implementation of the COM in two-dimensional space. 

III. COMPLEMENTARY OPERATORS METHOD 

The concept underlying the COM method is the application of two independent 
boundary operators [2]. Let us denote an ABC by B. Then two complementary 
operators denoted by BJ, and B$, can be obtained by applying the dt and dx operators 
separately on B to obtain: 

Bü[U] = dxB[U] = 0 (1) 

B$,[U] = dtB[U] = 0, (2) 

where U is the unknown field on which the boundary condition is applied. 

It can be shown [2] that for a time-harmonic plane wave, the reflection coefficients 
for Bjf and jBj^ are given respectively by: 

R{Bü) = (-)R{B) (3) 

R{B},} = (+)R{B} (4) 

The averaging of the two solutions obtained from applying each of the two oper- 
ators separately gives a solution containing only second-order reflections, including 
those that arise from corner regions. The corner reflections, although second-order in 
nature, can be a significant source of error since the fields impinge at the corners at 
highly oblique angles which cause the second-order reflection to remain substantial 
in comparison to second-order reflections coming from the side boundaries. For in- 
stance, when using COM4, a wave incident at the corner at an angle 70° comes back 
into the domain with an approximately 1% reflection. 

To cancel corner region reflections in two-dimensional space, four independent sim- 
ulations, instead of two, would be needed. For each simulation, one needs to impose 
a unique combination of Bjj and Bpj over the four sides of the outer boundary as 
shown in Fig. 1, where for brevity, we use 4- to denote B%, and — to denotes Bjf. 

For further illustration, we show in Table 1. the magnitudes of the first and second 
order reflections due to the upper-right corner (assuming an incident pulse of unity 
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magnitude), for each of the four needed solutions. Notice that the average of all the 
values in the third column eliminates the corner reflections. 

In the original implementation of the COM, the focus was on the annihilation of 
first-order reflections, and thus, only two independent simulations were considered. 
The four solution scheme was avoided because it was believed to lead to an excessive 
operation count for practical problems requiring large space and a large number of 
time steps. The concurrent implementation of COM is intended to achieve two ob- 
jectives: 1) To implement the complementary operators within one single simulation, 
and 2) To allow the annihilation of corner region reflections. 

IV. CONCURRENT COMPLEMENTARY OPERATORS METHOD 

The concurrent implementation of the COM involves the application of comple- 
mentary operators at a distance from the terminal boundary (into the computational 
domain) such that the first-order reflections are canceled right before they reenter 
the computational domain. The implementation entails dividing the FDTD compu- 
tational space into two regions: A boundary layer and an interior region, as shown in 
Fig. 2. The interior region includes the scattering object and any localized sources. 
First, we illustrate the application of the C-COM to reduce reflections from side 
boundaries only. To this end, we assign two storage (memory) locations to each 
nodal field in the boundary layer. (The following discussion focuses only on the 
treatment for the TM polarization case; the TE polarization is fully analogous.) We 
denote the two storage locations assigned to Ez as E^\ and JB|

2
'. Similar assignment 

is made for Hx and Hy giving H^\ H^\ and H^\ H^\ respectively. 

Within the interior region, each of the field components is assigned a single storage 
location, as in typical FDTD implementation. Within the boundary layer, E^\ and 
E^ are updated independently using their associated H fields. Next, we apply the 
two boundary operators (1) and (2) to E^\ and i?j2' respectively. Notice that each 
set of fields in the boundary layer is updated independently of the other set. This 
amounts to having two independent simulations in the boundary layer. 

The next step is to connect the solutions in the two regions. This is performed by 
averaging the two values obtained for each field at the interface lying between the 
interior region and the boundary layer. The exact location of this interface defines 
the width of the boundary layer. This width directly impacts the additional memory 
overhead that will be required in comparison to standard ABC implementation. The 
width of the boundary layer is required to be at least the width (size) of the stencil 
needed for the discretization of the ABC in (1) or (2). 

The above steps required for the implementation of the C-COM are summarized as 
follows: " 

• Ez , Hx and Hy are updated in the interior region according to standard FDTD 
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equations. 
• In the boundary layer, E^> is updated from Hjfi and H^\ and Ejp is updated 
from H^) and H^>. Both sets are updated using standard FDTD equations. 

• Btf is applied to E^> and £$ is applied to Ef\ 
• E^ and E^ are averaged along the interface connecting the two regions. The 
new values of Ejfi and E^ along the interface are given the value of the average: 
(£<i) + jB(2))/2. 

• Advance time by one half time step. 
• Update Hx and Hv in the interior region. At the interface, Hx and Hy in the 
interior region will use (E^ + E^)/2 as calculated in (4). 

• In the boundary layer, H^ and H^ are updated using Ejfi, and H^ and 
H^ are updated using E&h 

We mention here that if the averaging is carried out at an interface placed within the 
stencil of the ABC ((1) or (2)), then the solution becomes catastrophically unstable. 
This is because averaging within the boundary layer creates a discontinuity that 
violates the analyticity of the solution. 

The procedure outlined above annihilates reflections arising from side boundaries. 
To extend the annihilation to corner reflections, four storage locations need to be 
assigned to each field in the boundary layer to account for second-order reflections. 
For each field set, i.e., (EJp,H®,H<p,i = 1,2,3,4), one of the ABC combinations 
shown in Fig. 1 is applied. Then an identical averaging procedure to the one outlined 
above is performed, with the exception of having four field values to update in the 
boundary layer and four field values to average at the interface. 

In a manner consistent with the nomenclature used for the COM method [2], the 
C-COM employing a 4th order operator will be denoted as C-COM4. Furthermore, 
we use two additional parameters to fully identify the methodology used in terms of 
doubling or quadrupling the fields in the boundary layer and its width. When the 
fields are doubled in the boundary region, resulting in the cancellation of side reflec- 
tions only, we refer to the method as C-COM4(2,W), where W indicates the width of 
the boundary layer. Similarly, when the fields are quadrupled in the boundary region, 
annihilating corner reflections, we refer to the method as C-COM4(4,W). 

The extension of the C-COM implementation to 3D space is performed in an entirely 
analogous fashion to the implementation in 2D space. To suppress reflections arising 
from side boundaries (single-reflection), two storage locations need to be reserved for 
each field in the boundary layer. The annihilation of corner reflections, however, and 
unlike the 2D space case, would require a total of eight storage locations for each field 
in the boundary layer. This is because the cancellation of corner reflections requires 
the imposition of eight possible unique permutations of (1) and (2) at the boundaries 
(2M, where M is the number of sides forming a single corner). Notice that in the 3D 
computational space, there are two types of corners: The first type is a corner formed 
by two planes, and the second is the one formed by three planes.  It can easily be 
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demonstrated that the cancellation of secondary reflections arising from either of the 
two types of corners would require 8 storage locations. 

In the 3D space, the annihilation of corner reflections levies a heavy memory bur- 
den and it is therefore reserved for applications in which substantial computational 
overhead justifies the desired accuracy [4] 

V. NUMERICAL RESULTS 

We consider a numerical experiment to show the level of improvement achieved 
when the terminal boundaries are brought close to the source of radiation. Here, we 
choose a computational space of size 21 x 21 and uniform cell size in the x and y 
directions of 0.015m . The boundary layer will then be added to the outside of this 
domain as will be shown below. A line current source is positioned to coincide with 
the center of the domain which we indicate by (is,js), and an observation point is 
chosen close to the source at (is + 5, js + 5). 

The excitation waveform is a compact pulse given by the convolution h(t) * h(t) 
where h(t) is defined over the time interval 0 < t < r and is given by 

h(t) = 7rl04(15sin(wii) - 12sin(<^i) + 3sin(u>3*)) (5) 

where r = 10~9 and u>,- = 1-K i/r, i = 1,2,3. 

We present the results in terms of the normalized absolute error defined as 

where y{i) is the solution that corresponds to the C-COM solution and yre*(t) is the 
reference solution (reflection-free solution). 

Figure 3 shows the effect of applying the C-COM4 technique when varying the 
width of the boundary layer from 8 cells to 12 cells. Higdon's 3rd order ABC was 
used as the basic operator B (see (1) and (2)). 

Figure 4 gives a comparison between the PML and C-COM4 solutions, with both 
having a 12 cell boundary layer. The PML layer chosen was optimized to give the low- 
est reflection possible. The optimization of the PML was carried out experimentally 
by trial and error. The PML layer with least amount of reflection for this problem 
was found to be PML(12,5,le-8) (following the nomenclature of [3]). The C-COM4 
solutions shown in Fig. 4 were obtained by applying complementary operators to 
Higdon and Liao 3rd order ABCs. Also shown in Fig. 4 is the normalized signal. 
From Fig:4, we see that the C-COM procedure yields a substantial reduction of the 
artificial reflections especially over the portion of the pulse which contains most of 
the energy. 
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VI. SUMMARY 

A novel implementation of the complementary operators method is presented. This 
new implementation is based on the application of complementary operators at a 
distance from the terminal boundaries such that the first order reflections are anni- 
hilated before they enter the computational domain. The method is very simple to 
implement since it is based on the one-way wave equations such as Higdon's boundary 
operators. 

The major accomplishment of the C-COM method is the implementation of comple- 
mentary operators without the need for two independent simulations as was originally 
conceived in the COM method. Furthermore, the C-COM theory allows for the an- 
nihilation of corner reflections with reasonable efficiency in the 2D space. Finally, we 
note that unlike the COM method, the C-COM extends to scope and applicability of 
the complementary operators theory to the efficient treatment of non-linear media. 
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1st reflection (Rl) 2nd reflection (R2) 
solution #1 R Ri 

solution #2 -R R> 
solution #3 R -JP 
solution #4 -R -Ri 

Table 1. Corner region reflections. 
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Figure 3. Solutions obtained using different C-COM layer thickness. 
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Accurate Boundary Treatments for Maxwell's Equations 
and their Computational Complexity 

Thomas HagstromJ Bradley K. Alpertf Leslie F. GreengarcP, S. I. Hariharan^ 

1    Introduction 
The problem of accurate boundary treatments has long been an obstacle to the development of 
efficient and reliable time-domain solvers for electromagnetic wave propagation problems. Ideally, 
an artificial boundary would be placed immediately adjoining the part of the domain contain- 
ing any inhomogeneities, and the boundary treatment would be capable of arbitrary accuracy 
at a cost not exceeding that of the interior solver. In this note we consider a variety of tech- 
niques capable of achieving arbitrary accuracy for special boundaries, and estimate the associated 
cost. For plane boundaries these include direct implementations of the exact condition as a 
convolution Volterra equation, high-order local boundary conditions deriving from the work of 
Engquist-Majda-Lindman, and stabilized absorbing layers. For spherical boundaries we consider 
implementations of the exact condition using local operators, in particular the conditions of Grote- 
Keller and a new spatially localized equivalent, as well as conditions based on uniform rational 
approximations. 
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We find, in the planar case, that none of the conditions quite meets the goal for long time 
calculations. From the point of view of work, the implementation of the exact condition is accept- 
able, but its associated storage cost is high. The absorbing layer requires somewhat less storage, 
but more work. For the spherical boundary, on the other hand, all the methods presented require 
acceptable work and storage. Moreover, the introduction of a fast spherical harmonic transforma- 
tion would make the work associated with the approximate conditions small in comparison with 
that required by the interior solver. 

2    Plane Boundary 

2.1    Exact Boundary Condition 

Consider the plane boundary, x = 0, and suppose that all initial data, inhomogeneities, et cetera, 
are confined to the region x < 0. For x > 0 we have Maxwell's equations: 

— = -V x H, (1) 
at      e 

^ = -±V x E. (2) 
dt p 

Fourier transformation with respect to the tangential variables (dual variables k2 and k3) and 
Laplace transformation with respect to t (dual variable s) leads to a differential-algebraic equation 
in x.  Its solution produces a parametrized representation of exact boundary conditions of the 
following form: 

l^-^J+^Ca-aJ^-av^O + ^^-^^-O,    (3) 

|(V^ + ^.) + «((i-Äv^ + /»ViwO + ^^ + ^^ = o.   (4) 

Here we have defined: 

ftU = Wi^U:*(^)j, (5) 

where T represents Fourier transformation in the tangential variables, |fe|2 = k\ + k\, and 

_i      j fW) 
^^-■(S+^TW/M)  =TMT- (6) 
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The parameters a and ß are arbitrary. (For a detailed derivation of these formulas see [5].) 
It is possible to directly implement these exact boundary conditions. The main expense is 

associated with the temporal convolution. To quantify this, suppose we are solving a problem 
which is 1-periodic in the y and z directions and that the length of the interior domain is also 1. 
Suppose further that the maximum wavenumber which must be accurately represented is Nmax 

and that the time period of interest is T. The work and storage associated with the interior 
scheme will then scale like: 

WrcxTN4
max,   SlCxN3

max. (7) 

For the boundary condition, using the fast method for convolution Volterra equations proposed 
by Hairer, Lubich and Schlichte [14], and FFT's to compute the Fourier coefficients we find: 

WB<xTN3
max\n2{TNmax),   SB<xTN3

max. (8) 

We see that, except for extremely large T, i.e. T oc eNm", the work associated with the 
boundary condition is small compared with the work associated with the interior scheme. However, 
for T large, the storage required by the exact condition dominates the storage required by the 
interior scheme. It should be possible to reduce the storage burden by coarsening the past data, 
making use of the (\k\t)~3/2 decay of the kernel. However, we have not yet carried this out. 
Numerical experiments using this technique for the scalar wave equation will be reported in [4]. 

2.2    Approximate Conditions 

Generally speaking, approximate boundary treatments may be viewed as replacing the temporal 
convolution operator with some other operator whose action is more easily computed. That is, the 
operator 71 is replaced by a new operator A. To estimate the error in the resulting solution, we 
must estimate the stability constant, KA, of the approximate problem, and the difference between 
H and A. Following [16], the latter is most easily accomplished in the dual variables. In particular 
we find: 

Error(fc) oc KAeaT max \R(s, k) - Ä{s, k)\, (9) 

where a > 0 is chosen so that Ä is analytic in 5R(s) > a. Note that for time uniform estimates 
it is necessary that a = 0. We see below that none of the standard approximations on plane 
boundaries achieve this. 

The first improvable sequence of approximate boundary conditions, based on Pade approxi- 
mants (in s_1) of R, were suggested by Engquist and Majda [7] and Lindman [15]. These are 
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chosen to be equivalent to local operators in both space and time. They correspond to: 

«A*«+l£l \<l+1J <? +COB* ^ lh l<?+Us2 + COS2-Z?^ 

Note that the poles of Ä are located on the imaginary axis, precluding time uniform error estimates. 
Using either the techniques of [16] or the direct time-domain approach of [12] we find q oc NmaxT. 
Hence, for these conditions we require: 

WBocT2<ra,   SBocTN3
max. (11) 

For T large, these estimates suggest that the Pade conditions will cease to be competitive 
with the exact condition, though for small T they are likely to be reasonably efficient. Some 
improvement of the T-behavior of the estimates may be possible for non-periodic problems. 

An alternative to the use of local approximate boundary conditions is to introduce some sort 
of absorbing layer. There has been great recent interest in this approach, spurred on by Berenger's 
introduction of the so-called Perfectly Matched Layer (PML) [6]. It has been shown, however, that 
the Berenger PML is not strongly well-posed [1]. Moreover, our own numerical experiments [8, 4] 
have all resulted in long time instabilities, which may be attributable to this. Recently, Abarbanel 
and Gottlieb [2] have proposed an alternative which avoids this difficulty. It is possible to represent 
the effect of the layer as an approximate boundary condition, and to apply the preceding theory. 
In particular, if d denotes the layer width and ä the average absorption we have: 

Ä(s,k)-R(s,k) = 2 Ue^ + \k\^-{^eßs + a(d))\ e_M^^(w/(^s)) (J2) 

R{s,k) \Jeßs2 + \k\2 + (jqls + a{d))) 

Clearly this is not small for s = ±i\k\/y/eß, precluding time-uniform estimates. Fixing a, we find 
that we must take 

docT1'2, (13) 

which implies 
WBOZT^N^,   SBOLT^NL*. (14) 

These results are worse than those obtained for the exact condition in terms of work, but better 
in terms of storage. They are better in all ways (for T large) than those obtained for the Pade 
approximants. It is possible that the estimates can be significantly improved for non-periodic 
problems, i.e. that it would then be possible to choose d independent of T. 
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3    Spherical Boundary 

3.1    Exact Condition 

We now consider a spherical boundary, r = R. Again, using separation of variables, it is possible 
to derive useful representations of the exact boundary condition [5]. A particularly succinct form 
is: 

| f -ft + JW*  \  = _     1       £ £  (WW MSn * a){t) + wflMSn * ßW)) , (15) 
Ot V Vttj$ ~ VM-H« / «M-K   n=0m=0 

where 

«=£<*(*;>■ "=£«• (*:)>■        (i6' 
and the vector spherical harmonics are given by: 

\       sin«   30    / \ dB ' 

The transform of the temporal convolution kernel is: 

l     Z-1/2ir„+i/2(z) 2 I 

with Kn+iß denoting the modified spherical Bessel function. 
A remarkable property of Sn{z) is that it is a rational function of degree (n — l,n). This 

implies that convolution by Sn can be localized; that is its equivalent to the solution of an order n 
ordinary differential equation in t. The first to notice this property of the exact condition and to 
implement the resulting localized boundary condition were Grote and Keller [9, 10, 11]. Recently 
we discovered a continued fraction representation of Sn which allows some simplification of the 
Grote-Keller formulation [13]. It is: 

c (z) -    "("+ *) 1  (19) n(   ' ~ 2 ..,-,,       n(n+l)-l-2     ■ V"> 
z+'+     j+3+... 

The key point is that the index n occurs only in the combination n(n +1) which is the associated 
eigenvalue of the Beltrami operator. Hence it is possible to formulate the exact condition using 
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only local operators, that is without spherical harmonic transformations. In either case, it is 
necessary to introduce roughly Nmax auxiliary functions at the boundary with the associated 
work and storage satisfying: 

WBxTN^ax,   SBocA£m. (20) 

Here we see that the work and storage required are asymptotically comparable to that of the 
interior scheme. 

4    Approximate Conditions 

In order to further reduce the complexity of the boundary condition, one must decrease the 
number of auxiliary functions required. One simple possibility is to apply the exact condition to 
M < Nmax harmonics, and treat the others using some asymptotic approximation. Although in 
practice this may sometimes be more efficient than the full formulation, it cannot improve the 
overall scaling of the work and storage. Another approach is to approximate the rational function 
5„ by a rational function Qn of degree (9-1,9) with 9 < n. Recently [3], using multipole theory, 
we have shown that this is possible with: 

90c Inn. (21) 

This yields: 
SB<xNZua]nNma<St. (22) 

The work, however, still includes spherical harmonic transforms at each time step and thus retains 
the same order. However, the development of an efficient fast spherical harmonic transform would 
reduce this to TN^ax lnp Nmax < W,. 
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Perfectly Matched Layer Methods in Spherical Coordinates 
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Abstract 

In this paper, we discuss the split-field and the well-posed perfectly matched layer (PML) method 
in the spherical coordinate system. The PML method admits decaying plane wave solutions in the 
layer region that match the plane wave solutions in vacuum perfectly. For the split-field PML method, 
we split the fields in $ and ^-direction. For the well-posed spherical PML method, we only need to 
solve modified Maxwell's equations that is symmetric hyperbolic. Numerical experiments have been 
done to validate these methods. 

1    Introduction 

In [1] Berenger proposed the perfectly matched layer (PML) method in the context of truncating the 
computational domains in the numerical solution of Maxwell's equations. The method is developed for 
Maxwell's equations in Cartesian coordinates and the absorbing layer is shown to be nonrefiecting at 
the vacuum-layer interface. It was extended into 3-D in [2]. As the 2-D and 3-D PML's designed by 
Berenger have vacuum-layer interfaces that are rectangular by construction, there have been many efforts 
in extending the rectangular PML method into other coordinate systems. 

In [3], Kuzuoglu and Mittra presented nonplanar perfectly matched absorbers for finite-element mesh 
truncation. They designed PML's to absorb spherical and cylindrical waves. They also derived the 
reflection coefficients for the PML's and showed that the coefficients could no longer be made identically 
zero in general, unlike the rectangular PML method. They showed that the extension was effective when 
the radius of the vacuum-layer interface was electrically large. The existence of ideal nonrefiecting PML 
methods in spherical or cylindrical coordinate system remained open. It is our purpose here to show that 
ideal nonrefiecting PML method can be obtained in the spherical and the cylindrical coordinate systems. 

Note that in [4] we already obtained the polar perfectly matched layer method in polar coordinates 
(2-D) where the vacuum-layer interface is a circle. Numerical results of the method turned out to be 
superior to other methods. This method can clearly be extended to the 3-D cylindrical case. In this 
paper, we concentrate on developing the 3-D spherical PML method by using the same techniques as 
we used in [4] and [5]. The desired vacuum-layer interface for the 3-D spherical PML method is the 
surface of a sphere. The method we develop admits plane wave solutions that match perfectly at the 
vacuum-layer interface, i.e. plane waves of any frequency and any incident angle can pass through the 
interface without causing any reflection. 

The remaining part of the paper is organized as follows. In section 2, we give the non-dimensionalized 
3-D Maxwell's equations and formulations of the plane wave solutions in the rectangular and spherical 
coordinate systems. Section 3 first discusses the rectangular perfectly matched layer method briefly and 
then presents the new perfectly matched layer methods in the spherical coordinate system. In section 4, 

•Research was supported by Air Force Grant F49620-96-1-0426. 
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numerical results validating the methods will be presented, and concluding remarks are given in section 
6. 

2    The Non-dimensional Maxwell's Equations 

We consider Maxwell's curl equations in free space: 

dH 1_     ?      ÖE      1 & n. 
—— = V x E ,    -7— = —V x H . (1) 
dt ß0 '     dt      e0 

w 

Here £o and /Jo are the free space permittivity and permeability, with the speed of light in free space 
being c = (£oW>)-J • To facilitate our analysis of the spherical PML methods, we apply the following 
transformation to non-dimensionalize the above equations: 

x = x/L ,   y = y/L ,  / = ct/L , 

where L represents a scale length and the fields are normalized as 

H = H ,  E = «/—E ~ ZQ E , 
V Po 

where Zo represents the free-space impedance. Now we obtain the non-dimensionalized Maxwell's equa- 
tions in the following: 

dH       „     „      oE     _^     „ /rt. 
-öT = -Vx£'   1H=

VXH
- & 

The expression of the V x operation in the spherical coordinate system is 

VxA=   f7^[§}{Sm9A^-a-^]+ 

n[+ea-t-U^)] + ti[U^e)-*-£?. 
(3) 

Maxwell's equations admit the following plane wave solutions: 

E = {hi + miy + n^y^-l-rny-n.)   ^ (4) 

E = {l2x + m2y + n22)eMt-te-my-»*) f (5) 

where 

hi + miy + n\i = {l2i + m2y + n2z) x {li + my + nz) , (6) 

l2x + m2y + n2i = {lx + my + nz) x {hi + m^y + n-iz) . (7) 

For a plane wave incident in the direction 9a, <j>o, we have 
iw(t-lx-my—nz) _ pi<*j{t—r(cos#o cosö+sinöo sin0cos(<£-^o))) (Q') 

in spherical coordinates. 
Now we write out the plane-wave field components in the spherical coordinate system in the following: 

ET = (cos^sin«! + sin^sintfm! + cosBni)eMt-r(coSeocos9+smeostaäc0s^-^))) ,                   (9) 

E$ = (cos^cos^i + sin<^cos6im1 - sin9ni)e^«->-(««*ocos«+Hn<»„sm8cosW-A,))) t                (10) 

E4, = (- sin#l + cos^mi)eM'-'-(co.9oco.9+sm9„sin«cos(*-*o)))   _ (n) 
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3    Perfectly Matched Layer Methods 

Since Berenger presented the split-field PML method, efforts have been seen to modify the method to 
other coordinate systems and to unsplit-field formulation PML methods. Besides from the latter methods' 
being computationally more efficient, the efforts were shown to be worthwhile in [8] by Abarbanel and 
Gottlieb in that the split-field PML equations are only weakly well-posed and may suffer from instability 
problems. 

The unsplit-field PML methods we present in this section modify Maxwell's equations by adding low- 
order source terms and ordinary differential equations. Hence the governing equations are symmetric 
hyperbolic and strongly well-posed just like the original Maxwell's equations. We also show that the 
well-posedness is achieved while keeping all the merits of the split-field PML methods. 

3.1    The Discrete Perfectly Matched Uniaxial Medium 

In [6] a PML method using an anisotropic lossy uniaxial medium was presented by Sacks et al., and 
was applied to frequency-domain-based finite-element methods. In [7] Gedney implemented the uniaxial 
medium as a PML for the FD-TD algorithm. The constitutive parameters of this anisotropic medium are 
given in terms of the complex permittivity and permeability tensors f = e0[A] and p, = JJO[A], where [A] is 
a diagonal matrix for a uniaxial medium. In a uniaxial medium in the z-direction, non-dimensionalized 
Ampere's law can be expressed in matrix form as 

ay 

Mi 
8z 

3HV 

dz 

BHr 
dx 

9H-, 
ay 

1 + ''M 

1 + 'iH 

E, 

(12) 

One can verify that the above equations admit the following plane wave solutions, as given in [7]: 

E = (h& + m1y + m(l + :-^L)z)e''1 (13) 

H = (l2i + m2y + n2(l + ^4^)*)e" (14) 

where (l,m,n), (Zi,mi,ni), and (Z2,"12,^2) are coupled by the relations in Eq. (6)-(7). One can see 
from the analytical solution that if ^^ is very large and o2(z)n is not large, which is possible if w 
and n are very small, the magnitude of the solutions could become too large for numerical computation. 
An analysis of a 2-D case of this problem can be found in [9] where the directional derivative of the 
magnitude of the plane wave solutions are calculated and analyzed. It was shown that if in a coming 
pulse there is significant component of moderate frequencies there might be a problem. 

However, we can design a layer that has the following plane wave solutions: 

E = (h c'z(z) + iu 
X + TOl 

o'2(z) + iuj' 
i-|-niz)ei"('-'x-m!'-n^er *(2)n (15) 

H = (k o'z(z) + iu 
x + mi 

o'z(z) + iu 
y + rc2i)e'<"(<-te-™!'-'"Oe-Mz)n , (16) 
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where (l,m,n), (/i,mi, rai), and (/2,TO2,i2) are coupled by the relations in Eq. (6)-(7). The magnitude 
of this set of plane wave solutions are uniformly bounded. It can be verified that they are indeed solutions 
of the following equations: 

8ff_- 
dy 

Mi 
dz 

dHv 

ax 

Bx 

'",[') Hv 7M+™   y 

o'Az)+tu,U* 

0 

0 

0 1 + 2&1 

0 

0 

0 0 '{,(') 

Ev (17) 

It is interesting to notice that when c"(z) = 0, Eq. (17) is the same as Eq. (12). In that case, the 
equation admits the unbounded solutions in Eq. (13)-(14) and the bounded solutions in Eq. (15)-(16), 
as u —>■ 0. Clearly, the physical solutions are the bounded ones. 

3.2    Spherical Perfectly Matched Layer Methods 

An application of Sacks' anisotropic medium idea in spherical and cylindrical coordinate systems was 
presented in [3] by Kuzuoglu and Mittra. They gave a full analysis of the reflection and absorption of 
cylindrical or spherical waves in the medium. Some restrictions and problems with this direct application 
of Sacks' anisotropic medium idea in those coordinate systems were observed by them. Kuzuoglu and 
Mittra obtained the spherical and cylindrical wave solutions in the medium and their reflection coefficients 
at vacuum-layer interface. It was observed that the medium was not ideally nonreflecting anymore. 

In OUT previous work in [4]-[5] and the current work, we found that direct extensions of 2-D and 
3-D rectangular PML's to polar (2-D), spherical and cylindrical (3-D) coordinates result in equations for 
which plane wave solutions could not be easily found. In fact, the equations we propose, which admit 
plane wave solutions having the same or even better properties than those of the rectangular PML's, are 
different in formulation compared with other extensions. In our work, our emphasis is on analyzing the 
analytical plane wave solutions in the layer to make sure that a PML indeed admit analytical plane wave 
solutions that have the same merits as those of rectangular PML's. 

We have obtained the split-field formulations of the PML method in spherical coordinate systems 
which is ideal and as advantageous as the rectangular PML's. 

8ET _     1 
dt   ~ rsine89 

dEH =     1    dHr     1 
dt        rsinfl d(j> 

dEfr _ d(H64, + He. 

(sin 0(5^+ ff0<;))- 
1    d{H64, + HeT)     cT{r) 

{Hfa + B^e) - r(r), dEer 

dt 
\dHT 

dB 

d<t> r 

d(Htr + H&) 

+ -{Bs4, + Bsr) - 

Er, 

- <j'r(r)Eer , 

(18) 

(19) 

(20) 
dt dr "rv/   *"' '    dt r OV       r- 

This method admits plane wave solutions that match at the spherical vacuum-layer interface. It can also 
be shown that these plane waves decay in all directions of propagation. However, since the unsplit-field 
PML methods may suffer from their drawback of being only weakly well-posed, in the following we want 
to show that the unsplit-field spherical PML methods could also be derived. We want the layer to admit 
solutions that are bounded like the solutions in (15)-(16) rather than those solutions in (13)-(14). 

The method we propose are symmetric hyperbolic and strongly well-posed by construction. In the 
layer region, we want the well-posed spherical PML method to satisfy the following plane wave solutions: 

zArl _L ,-,., add x,-,., 
Er = ErD(r,e,<l>),Ee: 

■ + tu> 

<rj(r) + iuj 
EeD(r,e,<p),E4,= 

O'T{T) + uo 
E4,D{r,e,4>) . (21) 
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Er = HrD(r,9,<t>) ,S, = £L±?±EtD(T,8,*) ,H* = ^^H,D(rA4>) , (22) 

where E$, Eg, K4,, and Eg are plane wave solutions in Eq. (9)-(ll) and 

£)(r Q   -U _ e-<rr(r)(cos«ocos«+sineosin9cos(0-*o)) (23) 

is the decaying factor. Let the vacuum-layer interface be at r = TQ. We should require that oy(r) = 0 for 
r < ro for the decaying plane waves in the PML to match incident plane waves perfectly. Following the 
considerations of the absorbing and reflectionless properties of the polar PML method, crT(r) is usually 
chosen as 

<7r(r) = C(r - r0)
n, n=l,2,... , r > r0 , (24) 

where C is a positive constant, such that the PML has the desired perfectly matching and absorbing 
properties. For the type of function oy(r) we use, one notes that 

^<*M (25) 

holds for all r > ro- Hence the above plane wave solutions are uniformly bounded. 
In obtaining a set of equations that admit the desired solutions, we only want to add complementary 

source terms to the original Maxwell's equations. The evolution of the source terms can be governed by 
ordinary differential equations if necessary. Now we first give the equations in the frequency domain that 
admit the desired plane wave solutions. 

(Zdbl + fc;)»^. 1     d ..      tf 1    dHe m, 

<" + *'»* = ^$-^-T-*M«-' (27) 

{iuWrM)b=%-i°g. + 2L + o>(T)RB. (28) 

Here we just verify one of the equations, Eq. (26). One only needs to notice that 

1   V«*»-^-^-**5?1*). <» rsin000v       v   *"     rsinO d<p       <r'r(r) + iuy 

by using the relations in Eqs. (21)-(22) and noticing that Er, H+, and Eg satisfy the original Maxwell's 
equations. Eqs. (27)-(28) are more complicated and lengthy to verify, which we hope to present soon 
elsewhere. 

To obtain our time-domain method, we introduce 

Er =   ;. .;.  Er,    ET =    '   T .  Er, 30 
cr'r(r) + zu o'r(r) + %w 

and denote 
DE = Er-Er, DH = Hr-Hr. (31) 

We propose the following set of equations in the time domain: 
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% + (^ - «rj(r))^ = ykeU^m) ~ f±*# + (^ - <r'r(r))DE , (32) 

# + <(0^ = Fib#-f±-f-<M^> (33) 

8-k + <ir)E* = # - i# + ^ + ^(r)ÄW , (34) 

and the supplementary ordinary differential equations are given in the following: 

^£ = (a'r(r)-^)Er-a'T(r)DE, (35) 

^ = Ht - a'T{r)QH , (36) 

^ = He- a'r(r)RH . (37) 

Note that ET — DE = Er, Hr - DE = Hr, and the magnitudes of Er, Eg, and Ej, are the same, as well 
as the magnitudes of HT, He, and Hj,. This is the property one desires for the multidomain numerical 
computation purpose, for which the detail will be given elsewhere. Note that the above set of equations 
are just Maxwell's equations with low order terms that are governed by ordinary differential equations 
in Eq. (37). The set of equations are still symmetric hyperbolic and strongly well-posed. 

4 Numerical Results 

To validate our PML methods, numerical experiments of electromagnetic scattering by a perfect electrical 
conducting (PEC) sphere have been done. The numerical scheme we use is a multidomain pseudospectral 
scheme. The computational domain is decomposed into a number of subdomains and al6xl6xl6 mesh 
is used in each subdomain. We have two layers of subdomains, one for the outer domain and the other 
layer of subdomains are next to the scatterer. In the outer layer of subdomains we apply the well-posed 
PML method, while in the inner subdomains we still solve the original Maxwell's equations. Detailed 
description of the 3-D multidomain spectral scheme does not fit in here and we hope to report it in the 
near future. 

In Fig. 1 we present the RCS result of a PEC sphere of electrical size ka = 5.3. Here we use the 
multidomain pseudospectral method with the split-field and the well-posed spherical perfectly matched 
layer method. The Mie-series RCS result is also plotted for reference. One can barely tell any difference 
from the two RCS results. 

The inner layer of subdomains, next to the sphere, spans one wavelength in the r-direction. In Fig. 
2 we plot the Ex field | from the scatterer surface in the back scatter region, and the difference between 
the field and the one obtained in the reference computation using a larger computational domain. It is 
shown in the figure that the difference between the two fields is within 1 x 10-3 after the initial noise, 
which is the result of the initial non-smoothness of the type of excitation used. 

5 Conclusions 

Our emphasis in this paper is to present the perfectly matched layer (PML) methods in the spherical 
coordinate systems. The reflectionless property at the vacuum-layer interface is guaranteed because the 
plane wave solutions of Maxwell's equations match perfectly with the decaying plane wave solutions 
of the equations for the PML methods. The split-field spherical PML method is obtained by splitting 
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Figure 1: Comparison of ECS's obtained from spectral method with split-field spherical PML (SPML), 
well-posed spherical PML (WSPML), and Mie-series for a PEC sphere with electrical size ka = 5.3. 

Figure 2: Comparison of field obtained from spectral method with spherical PML and reference for a 
PEC sphere with electrical size ka = 5.3. - 
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the equations for the fields in the 9 and the <j> directions. The equations for the PML methods are 
obtained by modifying the original Maxwell's equations with low-order terms and O.D.E.'s. Hence they 
are well-posed by construction. 

The PML methods are demonstrated to be effective in numerical experiments, where we compute the 
electromagnetic wave scattering by a sphere. They indeed carry all the merits of Berenger's rectangular 
PML method into the spherical coordinate systems. A detailed presentation of the 3-D multidomain 
spectral method we use for the electromagnetic scattering computation does not fit in the context of this 
paper and will be reported later. 
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The Unsplit PML for Maxwell's Equations in Cylindrical and 
Spherical Coordinates * 

Peter G. Petropoulos 
Department of Mathematics, SMU 

Dallas, TX 75275 

1.   Introduction 
We wish to solve the time-dependent Maxwell equations 

closed with constitutive relations 

dB 

* =   -VXE 

9D        „    TT — =   VxH 
dt (1.1) 

VD =   0 

VB =   0, 

D = e(x)E,   B = A»(X)H, (1.2) 

over a domain fic C V? that is embedded in an infinite dielectric background medium Qm of 
constant permittivity e(x) = e and permeability ß(x.) = ß. The initial values of the fields are 
given functions with compact support in fic. The resulting hyperbolic problem is discretized with 
a numerical scheme and our work does not depend on its particulars. 

On the computational domain boundary düc an absorbing boundary condition must be im- 
posed to provide field values for the interior solution algorithm. A multitude of such conditions 
has been derived and implemented by many researchers. An alternative to absorbing boundary 
conditions is to surround fic with a wave absorbing layer Qm of thickness d. Ideally, the transition 
from fic to Qm should not produce wave reflection while the fields that have penetrated into üm 
should attenuate as they propagate outward. The existence of layers with such properties was 
shown by Berenger [1] who produced the first split-field PML. Subsequently, the unsplit PML 
[2] has become popular. Our approach to the derivation of an unsplit perfectly matched layer, 
which can be viewed as an extension of [2] in cylindrical and spherical coordinates, begins in 
the frequency-domain, i.e., with (1.1) after applying the Fourier transform in the time direction. 
Therefore, our work herein can also be used with three-dimensional elliptic solvers for the Maxwell, 
or Helmholtz equations, in the two coordinate systems. We do not develop our approach in rect- 
angular coordinates since the equations produced are identical to those of [2] in the frequency- 
and time-domains. The layers herein are to be terminated with a Dirichlet boundary condition 
but other choices are possible. We will present numerical results elsewhere. 

"Supported in part by AFOSR Grant F49620-98-1-0001. 
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2.   The Method 
We consider the three-dimensional frequency-domain Maxwell equations (e_!ü,t dependence) 

in a homogeneous isotropic (lossless) dielectric (with permittivity e and permeability ß) that fills 
all of ft'3, 

-ia>e(x')E' = V' x H',    V' • E' = 0 
(2-1) 

-iu)ß(x')H.' = -V' x E',    V' • H' = 0, 

to be in normal form. Then, we divide space in two parts: the volume ttc, identified in applications 
with the interior computational domain where scatterers are embedded so that ]imxi_^an- e(x') = e 
and linix'.+afj- ß(x) = ß, and the volume Clm where e(x') = e and fi(x) = ß, which in general 
extends to infinity and whose presence has to be simulated in a finite-sized scattering computation. 

We seek transformations of the independent and dependent variables to rewrite (2.1) in terms 
of real-valued spatial coordinates, i.e., 

_ f x; > 
~ 1 S(x u) • x; x' e Um U düc 

w) • E; x'efimU dnc 

„. _ J E; x' L ..c .     . 
\ Ae(x,t^ ■ w- -' ^ o   nan <.z-^ 

-«      f H; x' e fic 

\ Am(x,w)-H; x' H       '    '"'      N   "     ' eümUdüc 

where x 6 1Z3 is an independent variable with units of space, and w S Kis the frequency. We 
show below that a reflectionless wave-absorbing layer can be achieved in cylindrical and spherical 
coordinates if the diagonal matrices S, Ae, and Am are chosen so that S = I for x € dQc and 
coordinate-independent expressions in Qm U dCic, such as V' x E' and V' x H', are invariant up 
to an overall factor that depends on (x,o;). 

The elements of (2.2) will involve the coordinate transformation u = 7„(u, OJ)U via the function 

yu(u,u) = U° + S»°au»
MdS, (2.3) 

where subscripts indicate the relevant spatial direction and u > «o € 7£+. The necessary change 
of variables in Qm U dQc will be done with ■£? = C,u-§^, where C,u =     }u  ,. Note, lim„_)u+ 7„ = 1 

and limu_>u+ ^ = a„(w0,cj). Our method is independent of the choice for an{u,iJ) and there are 
many possibilities. 

Herein, we will eventually choose au(u,w) € C with Im{au(u,u>)} « O(^) > 0, i.e., 

au(s,w)   =   Mi + *M);   £„>! 
(2.4) 

<^(«) = crrx«"; »>o, 

with (, eR.nel, ^(M) = «*«(«), <C(U) = ßffu{v), and <7™ax e ft+~ Hence, the independent 
variables in (2.1) can be thought to be analytically continued into the space of complex numbers 
in fim U 8QC while x € TZ3 in Qc. As we will show elsewhere, one may also choose au(s,ui) = 
£„(1 + <T„(S)/(1 — iui)) which is regular at u> = 0. 
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2.1    Cylindrical (p,(j>,z) Coordinates. 

The volume Qc occupies the region 0 < p < po, 0 < 4 < 2TT, \Z \ < z0, while Qm occupies the 
region p > p0, 0 < <t> < 2-K, \Z'\ > z0. We distinguish three distinct subregions of Qm in which 
PML equations must be derived. 

a. ilp region: p > po, 0 < <j> < 2ir, \z'\ < z0- 

The Maxwell equations (2.1) in normal form are 

-*K{Ej,Ef,Ej)   =   -j 

-iup{Hp,,Hj,H;) 

P V O-z' 
8 8 

d<f> dz 

(pH*') H, 

8 

(2.5) 

E,   (p'EA   Ej 

along with V' • E' - 0, V' • H' = 0. 
The presence of pü^ and pE^ in the r.h.s. of (2.5) leads to the realization that individual 

entries in these products must scale accordingly. We are naturally led to the scaling 

{p\4, Z')T = diag{jp, 1,1} • (p, (j>, zf 

E' =diag{C,—, 1} • E (2.6) 
7, 

H,=dtoS{C„-,l}-H. 

Applying (2.6) to (2.5) we obtain 

-iwp 

(JPCP 0 0 \ 
0 1 0 

V ° 0 ■Je 
ip I 

[i&p 0 0 \ 
0 1 

Ipip 
0 

I ° 0 ■Je. 
if I 

•E   =   VxH 

(2.7) 

■H -VxE. 

Since (2.6) enforces continuity of the unprimed tangential and primed normal electromagnetic field 
components (recall, limu_>tI+ ju = 1, and u = p here), the transition from Qc to Qp is reflectionless. 
The "material" tensor in the l.h.s. of (2.7) is denoted T. 

We must now determine the behavior of waves entering Clp from Qc in the p—direction. First 
observe that when V' • E' = 0 is employed in the primed cylindrical coordinates, the vector 
Helmholtz equation for the electric field o;2e^E' = V' x V' x E', obtained after the magnetic field 
is eliminated from (2.5), decomposes into two coupled equations for Ej and Ej, while the Ez> 
component uncouples and satisfies the scalar Helmholtz equation 

1  d     ,8Ej 

7W{PW] 
1 d2E,,     d2E,       ,    „       „ 

• + -r-rf- + u2efjtEz> = 0, 
p" d<f>" dz" 

(2.8) 
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and similarly for H'. The solutions of (2.8) and of the corresponding equation for Hz,, can be used 
to define TM-to-z (H', = 0) and TE-to-z (E', = 0) orthogonal polarizations, respectively; a linear 
combination of the two polarizations is used to express an arbitrary propagating electromagnetic 
wave whose z wavenumber is KZ. All components of outgoing waves are represented in the two 
polarizations in terms of an infinite series in the function (which solves (2.8)) 

U?(p',4>',z) = H<£{^eß-Klpym*'< (2.9) 

where kz = ujy/tpz ■ k = u^JIficosO with 9 > 0 being the angle of propagation w.r.t. the z—axis, 
m e (—00, oo) an integer, and H^(-) the Hankel function of the first-kind and of order m. 

Transforming the zero-divergence condition using (2.6), 

V'-E' = 0^ CP^(P7„Cp£„) + 
1  dE*     dE: 

+ ■ 
Pll d<t>       dz 

= 0, (2.10) 

we now derive the Helmholtz equation for the Ez field component. Eliminating the magnetic field 
from (2.7), the vector Helmholtz equation for the electric field in Qp is 

ußep. o 
I  ° 

0 
1 

7/>CP 

0 

o ,\ 
0 

c 1 
•E = Vx •VxE. (2.11) 

The z—component of (2.11) is 

2    c.       <-p<d sr      (dE°     dE* 

It is clear from (2.10) that 

d , 1 

dz dp )} 
d(pE^) 

dz )}]■ 

dz pjp 
pdp 

r   d ,r        PU   !  ffi*l d2E* Cp-zriCpPlpEp) + —2-äT ] = — 
Pll d<t> dz2 

(2.12) 

(2.13) 

so (2.12) becomes 

JL^±f     r9E'\\    l   *E* i d2Ez 

m^dp^^dp^^d^ dz2 + üj2tßEz = 0. (2.14) 

Observe that (2.14) is really (2.8) written in unprimed variables. These results also apply to the 
vector Helmholtz equation for the magnetic field. 

Now we can show that the solution of (2.14), obtained by applying (2.3)-(2.4) with (2.6) to 
(2.9), decays in the ^-direction independently of the frequency, for a wave of given kz because 
p = jp(p,uj)p exhibits a positive imaginary part that varies as O(^). Thus, in the asymptotic 
form of the outgoing Hankel function in (2.9), the desirable frequency-independent exponential 
decay is achieved in the p—direction since 

l#£W)l«- o-nPi 

lv\p'\ 
(2.15) 
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as \p'\ —> oo, where TJ = w^/eflsinO, and p\ = ^ Jpo <rp(s)ds is the imaginary part of p. The 
asymptotic condition \p \ —> oo, while clearly achievable if p —► co, can also be achieved if the 
product £p(Tp(p) is sufficiently large in the sponge layer of finite width dp — p\ — pB- The decay (2. 
15) also applies to waves moving towards p = p0 in the layer. A PEC (Perfect Electric Conductor) 
condition is applied at p = p\ (0 < ^ < 27r, \z\ < z0) to terminate the layer in the numerical 
implementation. 

b. Q,zp region: p > p0, 0 < (j) < 2-K, \Z'\ > z0. 

In this region we introduce the scaling 

(p',(j>',z')T = diag{jp,l,-yz} • (p,<t>,z)T 

E'=dmff{Cp,—,Cz}"E (2.16) V>5 
7„ 

H' = diag{C,p, — ,C}-H. pi 
7p 

and find the transformed equations are similar to those in (2.7) with the "material" tensor on 
each of their I.h.s. now replaced by 

T=        0     -^     0       . (2.17) 

The scaling (2.16) enforces the continuity of the unprimed tangential and primed normal electro- 
magnetic field components across the transition from Qz (see (2.20)) to ilzp at p = p0, and across 
the transition from Qp (see (2.6)) to Qzp at \z'\ = z0; these transitions are reflectionless. 

The divergence-free conditions and (2.16), via a derivation similar to the one that led to (2. 
14), now lead to the following Helmholtz equation for the z-component of E in Qzp 

Working backwards with (2.16), we observe that (2.18) is really (2.8) written in unprimed vari- 
ables. These results also apply to the Helmholtz equation for the z—component of the magnetic 
field. Thus, the solution of (2.18), and of the corresponding equation for Hz, is again obtained 
by substituting (2.16) into (2.9); the waves will again decay independently of the frequency, but 
now in both coordinate directions. 

This is because now both p = 7P(p, <J)p and z = ^z{z,ui)z exhibit positive imaginary parts 
that are O(^) hence, the decay shown on (2.15), is modified in Qzp and is of the form 

\H^\r)p)eikJ| « -!^Le-w>;-Ä"! (2.19) 

as |p'| —> oo, z > zo, where zt = ^ J^az(s)ds is the imaginary part of z . Again, waves in the 
layer moving towards |z| = z0 and p = p0 are also exponentially damped. Again, a PEC condition 
is applied at p — pi for 0 < <f> < 2TT, Z0 < \z\ < z\, and at \z\ = zx for p0 < p < Pi, 0 < <j> < 27r to 
terminate the corner region. 
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c. Qz region: 0 < p < px, 0 < i 

The scaling now is 

< 2ir, ZQ < \z | < Z\. 

(P , 4>, * )   = diag{l, 1,yz} • {p, <j>, z) 

E' = diag{l,l,Q-~E 

H' = dmff{l,l,C}-H, 

(2.20) 

and the resulting T can be found in [2]. The resulting equations are omited as they can also be 
obtained by transforming the (x, y) rectangular coordinates version of our layer to polar (p, <f>) 
coordinates. The PEC condition is now applied at \z\ = Zi for 0 < p < p\ to terminate the layer. 

2.2     Spherical (p, 6, <f) Coordinates. 

The volume Qc is now the interior of a sphere of radius pa, and Q.m is the volume p > po- The 
appropriate scaling is 

(p',e', <f>'f = diag{lp, 1,1} • (p, 6,4>f 

ti = diag{(p,rp\TP
1}-V (2.21) 

H'^diagiQ^;1^;1}-!!, 

and the normal form Maxwell's equations (2.1) are transformed in Qp to the following system 

( 1%,    0    0 \ 
—lup 0 

0 

0 
x 
c, / 

VxH 

■H   =   -VxE. 

(2.22) 

The matrix on the l.h.s. of (2.22) is labeled T. 
It remains to determine that waves in Qp decay exponentially in the p—direction independently 

of u>. The solution of (2.22) can be obtained by applying (2.21) to the solution of the equations in 
normal form which can be expressed as a linear combination of Electric and Magnetic multipole 
fields in spherical coordinates. Each component of the multipole expansion of the solution in Qp 
is proportional to spherical Hankel functions of the first-kind and of order m, so it will suffice 
to determine how (2.21) alters their behavior. It is a simple matter to determine that the waves 
decay as required in Qp since 

|A£V)I « j^|^"; _ (2-23) 

as |p'| —► 00, where now r/ = ui-^/epp ■ k, and p\ is of the form given below (2.15). Waves moving 
in the layer towards p = p0 will be similarly damped. In this case too the layer is terminated with 
a PEC condition applied at p = pi. 
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3.   Causality and Well-Posedness. 
The time-domain formulation is obtained through the inverse Fourier transform. Introduce 

D(x,w) = eT(x,o;) ■ E(x,w) and B(x, w) = ^iT(x,a() • H(x,w), where T is the diagonal matrix 
appearing in the transformed (2.1) in each coordinate system and sub-region. Simple algebra shows 
that each T can be decomposed as T = % + 71,, where 7f is a diagonal real matrix independent 
of u whose elements depend on the £u and satisfy lim^i 7f = I, and 71, is a diagonal complex 
matrix whose elements are proper rational functions of LJ that vanish as O(^) for u> -¥ co. 
Thus, the inverse Fourier transforms of the electromagnetic variables P = e%(x,ui) ■ E(x,w) 
and M = /i7I,(x,a;) • H(x,w), which can be viewed as induced polarization functions with a 
parametric dependence on the spatial variables, satisfy ordinary differential equations in time 
forced by the E and H fields (that is, convolution is not necessary). Further, being lower-order 
terms their contributions to the hyperbolic systems in each subregion can be dropped for analysis, 
i.e., causality and well-posedness will depend only on the relevant T\ (which influences the principal 
part only) in each subregion and coordinate system. 

We will provide details using the two dimensional equations in the subregion üz in rectangular 
coordinates. The causality and well-posedness in all the remaining subregions and coordinate 
systems can be proven in a similar fashion since the 6x6 Maxwell system that holds in each case 
can be cast in a coordinate-independent form as 

at 

m 
dt 

I    r;~'vxH \ 

\ / 

^-1{TW}*E 
= 0, (3.1) 

where the symbol * denotes matrix-vector convolution, and T~x is the inverse Fourier transform. 
The electromagnetic field consists of the vector U(z, z, u) = (Ex, Ez, Hy)

T (Transverse Electric 
polarization). Applying the inverse Fourier transform in the region z < z0, the vector function 
U(x,z,i) — T~x{\}{x,z,w)\ satisfies 

0 0 0 
0 0 
0 0 

9U 
dx 

= 0. (3.2) 

The eigenvalues of both matrices in (3.2) are the wave speeds {—c, 0, c}, where c = -i= is the 
wavefront speed in the dielectric, and there is one distinct eigenvector for each eigenvalue; the 
system is hyperbolic and causal. The change of variables V = C~x ■ U, where 

C = 

11 0 0 
0 1 0 

1° 0 41 
\ 

(3-3) 

shows that (3.2) is symmetric, therefore strongly well-posed. 
In the region z > z0, the relevant T( is 

(3.4) 
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The principal part of the system in the layer Q.z is 

0        ° °    \ *TT 
(3.5) 

'  0    0   -h- N \ ^ 0 0 0   v V 
9U     I iti 1 9U _k \ au 
~z~ + 0    0    0 -7^ + II 0 -s- = o at    \ ^ ° ° > j   ÖZ ^o 1 o   , 

j 9a: 

Obviously, (3.5) is identical to (3.2) when £, = 1, thus causal and strongly well-posed. The choice 
£z > 1 results in anisotropy; the eigenvalues of (3.5) in the z—direction are now given by the 
triplet {—#-, 0, ^-} (slow-down), while in the x—direction they are given by {—c, 0, c}. 

Causality is preserved because the maximum wave speed in Qz, which occurs in the x—direction, 
is c (> j-). We now establish that (3.5), with £z > 1, is strongly well-posed by showing that its 
principal part (dropping the lower-order terms) is symmetric hyperbolic, i.e., its coefficient matri- 
ces can be simultaneously symmetrized by some nonsingular similarity transformation. Applying 
Rz, the diagonalizer of the first matrix A in (3.5), i.e., Az = diag{—f-,0, f-} = R~1ARZ, to the 
second matrix B in (3.5) we obtain 

( 
R- BRZ = 

\ 

(3.6) 

To show that A and B can be simultaneously symmetrized, we seek a diagonal matrix D, such 
that D~1R~1BRZD is symmetric, and note D_1AZD remains diagonal (hence symmetric). Simple 
algebra determines that D = diag{l, y/2t;zJ£, 1} is an appropriate choice. We have just shown 
the principal part of (3.5) is symmetric hyperbolic, hence strongly well-posed. The equations in 
Qz, including the lower-order term, are a causal, strongly well-posed hyperbolic system. 

In order to indicate how our unsplit PML would be implemented in the time-domain in cylin- 
drical coordinates we give the hyperbolic Ampere's Law that results from (2.7). For simplicity we 
set £p = 1, and define 5p(p) = j ff0 ap{s)ds. In p0 < p < py we obtain 

dD„      .„    „. dD„ , , „       dE„ , , „ 

? = (VxH), 
dD.. 
dt+ap(p)Dz = (VxB.)z 

^ + äp{p)D, = td-S± + eap{p)E,, (3.7) 

dDz       dEz 

-dT = e^F + e<T^E- 
and similarly for Faraday's Law. In a computational setting, the PEC condition would be imposed 
on Ej, and Ez at p = pi to truncate the layer. The causality and strong well-posedness of (3.7), 
along with the corresponding Faraday's Law, can be shown at once by dropping the lower-order 
terms through setting ap — 0. Similar considerations apply to the unsplit time-domain system 
of equations that are obtained after the inverse Fourier transform is applied to the Qzp equations 
(Maxwell in a "material" described by (2.17)), and to (2.22) in spherical coordinates. 
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Abstract 

The exact absorbing boundary condition for Maxwell's equations in spherical coordinates, first derived and demonstrated by 
Grote and Keller, is evaluated against the unsplit perfectly matched layer. The latter approach is a recent generalization of the 
unsplit PML technique to the cylindrical and spherical coordinate systems. With numerical simulations we compare the 
convergence properties of both approaches, the evolution of various norms of the error they produce, and their behavior as a 
function of distance from the scatterer to the computational domain boundary where they are imposed. These results demonstrate 
that both conditions are remarkably robust, and highly accurate. 

I. INTRODUCTION 

Recently, Grote and Keller have presented a very promising family of exact nonreflecting boundary conditions for the 
solution of the time-dependent Maxwell's equations in three space dimensions [l]-[3]. These conditions are formulated on a 
spherical surface, outside of which the medium is assumed to be homogeneous, isotropic, and free of sources; they are local in 
time and nonlocal on the spherical surface, and do not involve high-order derivatives in the tangential/normal to the boundary 
directions. Although the artificial boundary surrounding the computational domain must be a sphere, the technique can be 
implemented in any coordinate system if appropriate mapping is incorporated in the interior numerical approach. 

Another remarkably efficient ABC is the Berenger split-field Perfectly Matched Layer (PML) [4]-[7]. The PML is a 
constantly developing technique which has provided a major advance in the effort to develop accurate solvers for radiation 
and scattering problems. Lately, its versatility has been increased via its extension to unsplit formulations and to other 
coordinate systems apart from the Cartesian one. Split-field PML's were derived for cylindrical and spherical coordinates [8]- 
[9] based on the complex coordinate stretching approach [5]. An unsplit PML in rectangular coordinates was given in [10] 
while [11] presented an unsplit frequency-domain PML that combines the anisotropic medium formulation with a geometrical 
construction involving a particular averaging procedure in the angular direction of the polar coordinate system. An imperfect 
PML in curvilinear coordinates is given in [12]. In [13]-[I4] the application of the PML in nonorthogonal FEM and FDTD 
meshes was investigated. Finally, an unsplit PML formulation for all three coordinate systems was proposed in [15]. In this 
technique, a coordinate and field scaling is performed in the frequency domain and is shown to be equivalent to mapping an 
isotropic dielectric, with certain constitutive parameters which may depend on frequency, to a dielectric that is 
inhomogeneous, lossy, uniaxial anisotropic, and perfectly matched to the former. By not requiring the arbitrary field splitting 
of other approaches it maintains the well-posedness and causality properties of Maxwell's equations providing stable 
numerical boundary closures whose numerical order of accuracy is equal to that of the interior scheme. 

In this paper we conduct a comparison of the absorption performance of the Grote-Keller boundary condition [3] and the 
unsplit PML of [15] in spherical coordinates. Various cases in two (3D reduced to 2D with symmetry arguments) and three 
dimensions are studied. The convergence of the reflection properties as a function of grid resolution, the behavior of the 
techniques as their distance from the scattering object is gradually reduced as well as the evolution of certain field 
components at different locations in the computational domain are some of the tests conducted in the present work. From the 
results, it is concluded that both ABC's provide very accurate results, enabling us to treat more complex three dimensional 
electromagnetic problems. Also, we can state that the PML class of ABC's behaves like the exact ABC's in spherical 
coordinates. In a forthcoming paper we will elaborate on the comparison between PML and exact ABC's in the three 
commonly used coordinate systems. 
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II. THE NONREFLECTING GROTE-KEIXER BOUNDARY CONDITIONS 

A. Derivation. Let us consider time-dependent scattering from a bounded scattering region in a three-dimensional space fi. 
We surround this region by a sphere 3 of radius R. In 3"', the region outside 3, the medium is assumed to be homogeneous, 
isotropic, linear with constant constitutive parameters E and /J (c2=l/pe) and no losses at all. As a consequence, electric field E 
and magnetic field H satisfy the vector wave equation in 3"' 

1 3 E 

c2 3r 
„ „ 13!H 

c2 dl2 (1) 

In order to solve Maxwell's equations in 3 , the electromagnetic field is decomposed into transverse electric (TE) and 
transverse magnetic (TM) fields. Hence, the electric component of the TE multipole field of order (n, m) in spherical coordi- 
nates (r, 6, if) is given by 

EZ(r,e,<P,t) = fm(r,t)Vm(6,<p), 
where \m and Um are the vector spherical harmonics 

Vm,(ö,?)) = fxU„ 

U™(fl.«P) = 

~ Jn(n + 1) 

1 

1  3Qm&&„~ 
sin0  dcp ad 

32»„ ax i 32».-' 
«9        sinö   dip 

(2) 

(3) 

(4) 

defined in terms of the orthonormal (according to the Li inner product on the unit sphere) nm-th, spherical harmonics 

while function/^ satisfies 

(5) 

.ll+üfiLtüL =0. 
r*        r2      I7""    ° 

(6) 

(7) 

rA2    dr2 

Similarly, the magnetic component of the TM multipole field of order («, m) is given by 
UZ(r,e,<!,,t) = gm{r,tyV„(0,tp), 

with gm satisfying £„[g„»J=0. It must be mentioned here, that equations (2) and (3) constitute a complete set of solutions for 
Maxwell's equations in a source free region. Therefore, in 3a, the total electromagnetic field is a superposition of the above 
multipole fields, expressed as 

 __',_..,„, .   !"„,.,„„„, Z <8> 
nai Ms» »ai Ms» ^ 

(9) 

E = SEE»m=SS{/m,(''>0Vm,+e-,VxrVmrÄ„m(r,5)&lj. 
„21 Ms» »21 Ha l L " JJ 

H = I IH^, =X £ {«™(r,0V„ "^'Vx^    f'/^r,*)*!}- 
»21 |m|S» »21 Ha I L » JJ 

By applying the f xVx operator to (8) and (9) and performing some mathematical manipulations based principally on cal- 
culus and differentiations we conclude to 

-VxSXE^4|llE-=Ilfi(|+i|k]Vra+^i(| + i|V]^l. 00) 
»2iHa cc*»2iHa »2i|m|a[   r\&    cat) \zr\dr    cat) 

"ci i£»==MfKH§)-iv~-Ji:KHf )*-'•>- (ID fxVx£5X 
»21 Ma 

where the superscript tan describes the tangential components of the respective fields. Although equations (10) and (11) have 
the form of a boundary condition, they cannot yet be used for this purpose due to the presence of the radial derivatives of the 
unknown functions fm and gm. Elimination of these derivatives is achieved by accepting that at r=R, fm and gnm satisfy the 
boundary condition derived in [16]. That is, 

a:+7-fV».]   =-d»-*l(0' fe. -d» -1-1(0 (12), (13) 

The vector functions I'lM^V'l'Mjand 1>l(0 = {*™'(0)fory=l,...,«, satisfy respectively the following linear first-order 

ordinary differential equations 

-4l4(0 = A,,1>l(0 + /„»,(K,0<V      wi,h      *L(0) = 0> (14) c at 
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(16) 

-4l»L(<) = A,l>I(0+&».OR.Oe„'     with    ■*i(°) = °- (15) 
c at 

Here, A„ is a constant nxn matrix with elements 
[   -n(n + l)l(2R>) if( = l 

y4»=|(n + /)(n + l-0/(20   ifi = ;' + l 
[ 0 otherwise 

while the constant «-component vectors d„ and e„ are defined as 
«(/t + 1); and e     r10     0f (17), (18) 

2R'    '     '       L 

Substitution of (12>(18) to (10) and (11) leads to the final form of the nonreflecting boundary conditions at r=R 

L(')U„ rxVxE-^ = il I (d„ .,L(0V. -Mi.-* (19) 

(20) 

where the vector functions i|£,(/) and t|>£„(0 satisfy (14) and (15). The unknown functions fm and gm can be calculated if 
we observe from (8) and (9) that the Vx(V„...) terms are orthogonal to V„m. Therefore, they can be efficiently replaced by 
the following inner products which involve integration with respect to 8 and <p on the sphere of radius r 

/- =(E-L.V-)'       '- =(H""I-'V»)- (2,)> (22) 

Equations (19) and (20) are exact and guarantee that no spurious reflections will take place at 3. They only require first- 
order derivatives of the solution, which makes them robust and easy to implement, thus allowing for the artificial boundary to 
be brought in (theoretically) as close as desired to the scattering object. In spite of the more complex formulation and their 
global character over the artificial boundary, they are explicit, well-posed (with respect to perturbations in the initial condi- 
tions), local in time and just involve inner products with spherical harmonics. Moreover, the amount of memory needed to 
store the vector functions vf»(0 and t|>£,(f) is negligible when compared to the storage required for E and H fields, while 
the main computational burden is focused on the calculation of (21) and (22) and the right sides of (19) and (20). 

B. Formulation of higher-order exact boundary conditions. In the context of a numerical method such as the FDTD tech- 
nique, the sums encountered in (19) and (20) cannot apparently be calculated due to the infinite number of terms they incorpo- 
rate. Consequently, they must be truncated at some finite value N, thus inevitably introducing an error in n>N modes. In order 
to alleviate this shortcoming, without affecting the accuracy of the n<N modes, an alternative formulation is presented in this 
section. According to this methodology, for the n>N modes it is assumed that the truncated boundary conditions reduce to 

fxVxE-i^=0. fxVxH-i^ = 0- (23), (24) 
c   dt c   a 

As stated in [16], (23)-(24) are the time-dependent expressions of the first-order Peterson approximate boundary condition, 
which suppresses the leading term in a large distance expansion of the electromagnetic field. This condition introduces an er- 
ror of 0(/f3) in n>N modes. In an effort to reduce this error significantly, a good idea would be to continue transforming the 
second-order Peterson condition to the time domain. Thus, for the E field we have 

with an error of 0(R"5). By applying the (f x(Vx)-c''d,-2lr) operator to (10) and (11), exact boundary conditions, trun- 
cated at n=N, are derived in a straightforward way. For illustration (10) becomes 

in which the f x V x (/(r)U^,) = :r— U„„ formula has been used. 
T     or 

Taking into account that the exact second-order boundary condition for f„m(r, t) can be written as 
(d    \3   2Yd    ld\, 

where the elements of the constant vectors p„ are defined by 

(27) 
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;   "("+l)/ü-l)     . , .90-, 
P,= ^ .    ; = !,-,«• (2S> 

The n>2 in the first sum of (25) is attributed to the fact that p\ = 0, and thus the n=\ terms vanish. 
Finally, the expressions for the truncated exact nonreflecting boundary conditions at r=R, in terms of the aforementioned 

algorithm are shown below 

{ rx(Vx)-i44ljfxVxE-^ 
v     '   cdt   R\\ C   or A     Ji22lmfcj. ' £ 

(29) 

C. FDTD implementation. The Grote-Keller boundary condition can efficiently terminate computational domains only in 
spherical coordinates. So, the curvilinear FDTD method [17]-[20] must be implemented. As this is has been studied in a vari- 
ety of scientific publications, analysis here will concentrate on special features of the boundary conditions, such as the com- 
putation of the inner products appearing in (21) and (22). It must be mentioned though that if appropriate mapping is per- 
formed, then this artificial boundary is not restricted to any coordinate system. In every FDTD lattice only one of the two 
electromagnetic field components must be absorbed at the boundary. Here, we will assume that the E fields are located there. 
Therefore, E is known at r=R-Ar and r=R, while H™ at r=R-Arl2. Since Maxwell's equations at r=R, in order to advance 
E with the leapfrog scheme, will require radial derivatives of H*", whose finite difference stencils involve values outside 3, 
expression (29) must be used. This can be achieved if we apply (29) at t=t+At/2 and r=R-&r/2, and approximate first-order 
derivatives on the left by centered finite differences. The inner products of (21) and (22) are computed over the sphere r=R- 
Ar/2 using the fourth-order Simpson rule, whereas (14) and (15) are solved with the unconditionally stable trapezoidal inte- 
gration scheme as 

(I-fA„>l((_) = (l+fA„)^((_)+„(%i^,V^e„. (3D 

(i-f A„)*i(w)=(i+f A.)*i«Mn)+f (Ht:Zr„+C^n.v-)..- (32) 

The complete form of the algorithm has the following steps: 
1. Initialization ofE at f=0 and H at f=Ar/2 as well as yl„(At / 2) = 0 and i|>l(J//2) = 0. 
2. Calculation of E at tj=tk.i+At in every point of the computational domain fi according to the usual FDTD technique. 
3. Calculation of E™ at tk and r=R in terms of (29) applied at r=R-Ar/2 and lk.u2=tt.y+Al/2. 
4. Calculation of H at rt+lcin every point of the computational domain fl according to the usual FDTD technique. 
5. Calculation of ipJL(<) and VÜ(/) axtMn in terms of (31) and (32), and return to step 1. 

in. THE UNSPLIT PML IN SPHERICAL COORDINATES - REFLECTIONLESS SPONGE LAYERS 

The complete methodology for the derivation of the reflectionless sponge layers is fully presented in [15], therefore we will 
concentrate only on the construction of the absorber in spherical coordinates since this is the case which is going to be com- 
pared with the previously described Grote-Keller boundary condition. 

We assume that the three-dimensional frequency-domain Maxwell's equations in a homogeneous, isotropic, lossless di- 
electric that fills all of Ä'3 

-/B£E' = V'xH', -jm/iH' = -V'xE', V'E' = 0, V'H' = 0 (33) 
are in normal form. In spherical coordinates (r, 6, if) we divide space in two parts, as shown in Fig. 1: volume Qc which is a 
sphere of radius r0 and volume ilr extending from r0 to infinity (r'>r0) whose presence has to be simulated in a finite-sized 
scattering computation. We also take into account the fact that the independent variables of (33) are analytically continued 
into the space of complex numbers in nrudilc while x'e R3 in fic. The main objective is to find the appropriate transforma- 
tions of the independent and dependent variables to rewrite (33) in terms of real-valued spatial coordinates, that is 

fx; x'eQ, [E; x'e£2 fH; x'e£2 .,.. 
x' — J c ,|r'_J c ,jj'_J c ,      (34) 

[S(x,iu)-x; i'eü,uär [A'(x,<o)-E; x'eQ,udßc ~\A"(X,I»)-H; x'eQ,u<3Qc 

where x.coeir. Matrices S, Ae and A™ are chosen so that S=I for xedQc and coordinate-independent expressions in fi,<_>3fi„ 
such as the curl operator of a vector field, are invariant up to an overall complex-valued factor. Since, in the primed variables, 
all components (tangential and normal) of E' and H' are continuous across 3flc, the transition from Cic to Cl, is completely re- 
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D E,(U,K) ■ a<U,K) 
o E»(I,J,K) • ft,(IJ,K) 
I> B,0,J,K)      » He(U,K) 

Fig. I. The geometry of the PML and the FDTD cell in spherical coordinates, 

flectionless. Finally, region H, is truncated at some distance d from 3fic by imposing a simple Perfectly Electric Conductor 
(PEC), or a Bayliss-Turkel boundary condition. This allows for the construction of layers with an exponentially small reflec- 
tion coefficient. 

The Maxwell's curl equations (33) in spherical coordinates can now be written as 

ä,.      r'ä~        r'sin0'a„. 

-jme{Er,,Ee.,Er.) = 
r'zsin0' 

H,   (r'Hr)   (r'sin0'ff,) 

a,.     r'ä„       r'sinö'a,,. 

-M;W,) = ~pr-t 
Er.    (r'£,.)   (r'sinfl'£..) 

The appropriate transformation (34) is 
(r',e',<p'f = diag{y„l,l}(r, 6, <pf, E' = Äag{?„y;1,)';,}E, H' = (flaggy;1,)/:'}-H, 

and (35) and (36) become 

'YX   o    o' 
E=VxH' -jap   0     C    0 -jios 

'YX   o    o 
0     £"'    0 

lo    o   V) 
In the above expressions (also used in [9], [11]) 

ro + J a, (•*><")* 
 ■       ar(

r'a)= ir 

I o    o   C) 
H = -VxE- 

Y,(r,v) = <w*>) ?  >1> CT,(r) = <Tr""''";      ">0, £. : 
1 

(35) 

(36) 

(37) 

(38) 

(39) 
ar(r,a>) 

where £eÄ, ne/ and a™ € R*. From (38) we can easily derive the unsplit time-domain PML in spherical coordinates (region 

ro<r<r,) and we give the hyperbolic Ampere's law, where for simplicity f,=l and 5,(r) = j\r o,(s)ds, 

3D >>r> dF 
y+5;(r)Z),=(7xH), 

(40) 

3D, 

dDe dE„ 

dt       rK '  °       dt 
dD, d.E. 

dt       rW   *        dt 
The frequency-independent exponential decay is achieved in the r-direction, in terms of the spherical Hankel functions of the 
first-kind and of m-order, as follows 

'C-' —'      ' •' "",h     n=(oJefir-k    and    r<= Im{r'} = i f <, (jVfc. (41) 
' tit JrB 

K\>,ri^e-«;     y\- with 
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- Sponge layer (4 cells) + 10x15x60 grid 
-m- Grote-Keller (20 modes) + 10x15x60 grid 
-^- Sponge layer (6 cells) + 10x15x60 grid 
-L- Grote-Keller (25 modes) + 20x30x120 grid -, 
-e*- Sponge layer (8 cells) + 10xl5x60grid 
-m- Grote-Keller (25 modes) + 40x45x240 grid : 

t/T 

Fig. 1. The evolution of the error (43) as a function of time. 

-©- Grote-Keller 

-£>- Grote-Keller 
—A- Sponge layer 

Grote-Keller 
-•- Sponge layer 

Fig. 2. Convergence of reflection at the rate of the interior scheme. 

IV. NUMERICAL RESULTS 

We implemented the Grote-Keller (given in (29) and (30)-(31), with the total number of modes as a free parameter) and the 
unsplit PML (40) ABC's in spherical coordinates to truncate computational domains in which the second-order accurate cur- 
vilinear FDTD scheme [17]-[20] is used to solve scattering and radiation problems. 

Our initial tests involve a 3D spherical scatterer of permittivity 3e0. permeability //0 and radius rsc illuminated by a wave 
generated with a pulsed p-directed magnetic-current point-source, whose time-profile is given by the smooth function 

g(t) =W0(10-15cos<u1t+6cosa>2r-cos<D3r) (42) 

that is compactly supported in re [0, T\, where H0 is the maximum source amplitude. The scatterer is centered on the grid at 
(r„ TI/2, (/>,), and the point source is placed at (r', it/2, <p 1 so that \rs-r'\=2rK. Therefore, numerical computations of the reflec- 
tion errors can be performed along this particular 2D transverse cut (#=JI/2 plane). Of course a variety of other source posi- 
tions could have been implemented in this problem. We assume that T=10" sec, <o„=2nm/T with m=l,2,3, rsc=2c773 and 
H0=(u0/e)"2/320. This scattering problem is embedded in an infinite three-dimensional free space, and solved numerically in a 
finite-sized test domain Q.c with boundary 3nc (of radius 3c772), using the curvilinear FDTD method. For the computation of 
the exact, reflectionless solution, we merely extend the mesh into a much larger domain Q.L terminated by PEC conditions on 
dnL. Truncation of fif is performed either by the Grote-Keller conditions located at dClc, or by the PML (sponge layer) of a 
certain thickness, which in turn is terminated by PEC condition on the tangential fields. Clc is evenly discretized with 10, 20 or 
40 intervals in the /--direction, 15, 30 or 45 intervals in the redirection, and 60, 120 or 240 intervals in the p-direction, while 
the total computation time is Twf=5T. As it is known from the Cartesian coordinates, the stability of the Yee scheme requires 
the Courant stability condition At < cAh l-Jl to be fulfilled. Here, we set Ar equal to the shortest edge in the mesh multiplied 

by c /S■ For the sponge layers we select £=1 and a parabolic variation for the conductivity function ar (r) = a" (r-r„)2. 

The error measure is 
e(,nAt) = pia-(r,q,,nAt)-H^(r,(p,nAt)\\l     ;    n e[0,T,„l At] (43) 

where the Li norm is calculated over Q.c\jdQ.c. Fig. 1 indicates the error (43) versus time computed in the 9=xl2 plane. As can 
be observed, the behavior of a 4-cell thick sponge layer is almost equivalent to a Grote-Keller condition with 20 modes for the 
small 10x15x60 grid. Further increase of the number of modes leaves the error unaffected at that resolution and this is mainly 
attributed to the coarse discretization and not to the boundary condition. Then we increased the number of modes to 25 on two 
successive grids of size 20x30x120 and 40x45x240 for the Grote-Keller ABC, while we maintained the 10x15x60 grid for 
the unsplit PML. It was found that merely increasing by two the number of cells in the PML was sufficient for the two errors 
to be comparable. 

Also, we calculated |e(.)|, / = 1,2,°° for «e [0,T,JAt], on a progressively refined grid, while keeping the rest of the physical 

domain parameters the same. In Fig. 2, the rate of convergence for the reflection property of the two ABC's is presented. One 
can see that for alLthe cases both the Grote-Keller (20 modes) and PML (6 cells) techniques converge to the exact solution as 

the grid is successively halved at the same rate. In Fig. 3, the |e(.)|2 norm (ß=nl2 plane) versus grid resolution over the time 

interval [0,5T\ is shown for the indicated number of modes (in the Grote-Keller ABC) and cells (in the PML). As the number 
of modes N used for the truncation of the infinite sums in the Grote-Keller boundary conditions is an issue of great interest, we 
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Hg. 4. The effect of N on the maximum error for the Grote-Keller ABC. 

-e- Grote-Keller (10 modes) 
r -A- Grote-Keller (15 modes) 

-e- Grote-Keller (20 modes) 
-*- Grote-Keller (25 modes) 

10   'J 

em»   ■ 

io-2 
1 

w-'\ 1 

IO"« 

,ol \x 1 

,o-= 

, -©- Sponge layer (4)       ^"--». 
,0 r -A- Sponge layer (6)              ""■"- 

-B~ Sponge layer (10J 
-*- Sponge layer (12) ,    n 

Cells 
Fig. 5. The evolution of the maximum error for the Grote-Keller 

ABC as a function of distance from the scatterer. 
Fig. 6. The evolution of the maximum error for the sponger 

layers ABC as a function of distance from the scatterer. 

tested the method by changing N for three different types of grids. We denote the maximum error over the time interval [0,57] 

as e^ = ||e(.)|    and give results in Fig. 4. It must be mentioned here that after 20 modes approximately the reduction of the 

error ceases and further increase of N seems to be pointless. This, of course, means that the grid resolution must become finer 
in order to obtain higher levels of accuracy. 

In all of the above experiments the distance of the absorbing boundary from the scatterer remained constant. Evidently, 
since computational resources should be kept at a minimum, we decided to study both methods as function of distance. The 
results are displayed in Figs 5 and 6 for a 40x45x240 FDTD grid. The PML seems to behave better than the Grote-Keller 
method since the error levels it introduces are smaller than the ones of the latter. 

Finally, we will consider the three dimensional problem presented in [3]. It involves an off-centered radiating electric di- 
pole located a distance z0=0.4m from the origin. The dipole is aligned along the z-axis thus allowing for the computational 
domain to be reduced to a 2D one in the (r, 0) plane. Its time dependence is a Gaussian pulse centered at <=<0 

[        0 r<0 

P(t) = h^e*"^»'   0<;<2(„ (44) 

{        0 t>2l„ 
and the total computation time is again T,0r5T. For the mesh discretization we select a significantly refined 60x360 grid, 
while the artificial boundaries are imposed at /f=lm from the center of the origin. We select two observation points in the 
computational domain,/>i=(0.75, 85°) and p2=(0.35,150°), where we study the evolution of the H9 waveforms. As can be seen 
in Figs 7 and 8, both boundary conditions can cope sufficiently with these kind of problems regardless of the location of the 
observation points. In spite of the axisymmetric character of the previous experiment we also solved it in three dimensions in 
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Hcp[A/m] 

«__^_» & s_ 

o Exact solution 
x Sponge layer(6) 
— Grote-Kclicr (10 modes) 

Hqp [A/mJ 

o Exact solution 
x Grotc-Kellcr (25 modes) 

Sponge layer(4) 

t[ns] 
Fig. 7. Solution for the H9, computed at grid location pi. 

tins] 
Fig. 8. Solution for the Hv, computed at grid location p2- 

orderto test the efficiency of the ABC's in a realistic scenario. The results of this implementation were identical to the ones 
presented in Fig. 7 and 8. 

V. CONCLUSIONS 

In this paper an investigation of the absorption performance of the recently presented Grote-Keller boundary condition 
versus that of the unsplit PML has been performed using the FDTD technique as the interior scheme in spherical coordinates. 
We found that both ABC's offer a spectacular reduction in the error due to the artificial domain truncation. Also, both ABC's 
can be brought very close to the scatterer, thus achieving considerable savings in computational resources. We will give 
elsewhere more results from extensive numerical tests and computational cost comparisons between the unsplit PML and the 
exact ABC in all three commonly used coordinate systems. 
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Abstract 

By using a unified formulation, we compare three perfectly matched layer (PML) absorbing boundary con- 
ditions (ABC) in two-dimensional polar coordinates. An improved scheme is proposed to save the number of 
unknown field variables and computation time. Two-dimensional polar FDTD algorithms are developed to com- 
pare the effectiveness and efficiency of these methods. Excellent agreement is found between numerical results and 
analytical solutions. The formulation is then extended to conductive media in full three-dimensional cylindrical 
coordinates. We have developed a 3-D nonuniform grid FDTD algorithm using one of these formulations, the 
quasi-PML formulation, in cylindrical coordinates. Applications of the 3-D program are demonstrated for borehole 
radar probing. 

I. Introduction 

The perfectly matched layer (PML) was first introduced by Berenger as a material absorbing boundary con- 
dition (ABC) for electromagnetic waves [1]. Because of its extremely low reflections at the computational edge, 
the PML ABC has enjoyed widespread applications in numerical solutions of multidimensional problems in com- 
putational electromagnetics (e.g., [2-7]), elastic and acoustic wave propagation [8-12]. 

So far, most PML work is focused on Cartesian coordinates. Although there are studies on PML for nonorthog- 
onal grids, notably [13-15], most previous schemes do not admit cylindrical harmonics as the eigensolutions of the 
modified Maxwell's equations, and hence can give rise to substantial reflections. Only recently, several formulations 
of PML ABCs have been implemented in cylindrical coordinates [16-21]. 

In this paper, we use a set of unified equations to introduce three different formulations for PML in cylindrical 
coordinates, i.e., quasi-PML in [16, 19], complex coordinate system as a generalized absorbing boundary condition 
[17, 20], and the polar PML presented in [18]. Based on the unified formulation, we propose an improved scheme 
to save computer memory and computation time. Then, we compare the numerical result of each approach with 
analytical solutions. For the sake of convenience, these three formulations will be respectively referred to as the 
QPML, CPML, and PPML in the following discussions. 

II. Formulations 

Since the formulation of PML in z direction with cylindrical coordinates is the same as that in Cartesian 
coordinates, for simplicity we first consider Maxwell's equations in two-dimensional polar coordinates for the TEZ 
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case. The formulation for the TMZ case can be easily derived by using duality. 

In the frequency domain, the source-free Maxwell's equations for TEZ case in polar coordinates are 

-iutE, = -^, (lb) 
or 

. 1 d(rEe)     ldEr 

""^^rSr-^-ee- (lc) 

where the time convention e~iut is assumed. Based on this set of equations, one can derive perfectly matched 

layers. Although several PML formulations have been proposed for cylindrical coordinates [16-18, 21], here we will 

discuss only on three different PML formulations, as it is shown that the anisotropic PML [21] is equivalent to the 

complex coordinate formulation [22]. 

A. A Unified Form for the Three PML Formulations 
Here we will adopt the concept of complex coordinates in [17] to present the three PML formulations for polar 

coordinates. We use the complex coordinate stretching variables er and eg [2] such that jj: -► ^:g7> 55 -* £;■§$■ 

In general, 

er = ar + iu>r/uj, (2) 

while ej is different for the three formulations. Then, Maxwell's equations (1) are modified as 

iueEr = -—^, (3a) 
reg 06 

iueEe = -^-, (3b) 
eT  or 

. 1   d(fES)   ,      1   dEr -iupHz = 5—-H 53-, (3c) 
rer    Or reg 00 

where f = f(r) is in general a complex function which distinguishes the quasi-PML and PML formulations. 

(a) PML scheme using complex coordinates (CPML) 

If we choose eg = f/r, er = ar(r) + iur(r)/ui, and the complex radial coordinate 

= =  rer(r')dr' = f \ar(r') +i^^-]dr' = Ar(r) + -fir« 
(4) 

equations (3a)-(3c), after splitting Hz = HZT + Hzg, can be cast in the following form: 

iureET = i — , (5a) 

. d(H„ + Hze) iweTtEg = , (5b) 
dr 

jfE 
dr 

&       a(f£«) CM iuierßH„ = ~—-, (5c) 
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iuifHzr = iu)Hzr, (5d) 

.  .  „ 6ET iuriiHz$ = ——. (5e) 

These are the split equations for the CPML formulations in [20]. This set of equations are appropriate for time- 

stepping after converted into time domain, as shown in [20]. However, the extra field variables Hzr and fEg have 
to be introduced, making the total number of unknown field variables to increase from 3 to 6 [20]. Furthermore, 
an extra time-stepping equation (5d) is needed. 

(b) Quasi-PML scheme (QPML) 
Note that in the unified formulas (3a)-(3c), if we choose e$ = er = aT(r) + iu)T(r)/u, and f(r) = r, we can 

rewrite the split equations as 
1 3H 

-iueTeEr = —-£, (6a) 
T   OO 

QTJ 
-iuiereEs = —~, (6b) 

„       ld(rEe)     ldEr iwerpHz = £—^ —. (6c) 
r    Or T 00 

Thus it turns out in 2-D polar coordinates there is no need to split the field in the quasi-PML. Hence, the total 
number of unknown field variables is 3. It should be noted that, in 2-D polar coordinates, this medium actually 
reduces to a medium whose relative electric and magnetic conductivities are the same. For 3-D cylindrical problems, 
however, the splitting is necessary in order to match the interfaces in r and z directions simultaneously. 

From (6), the time-domain equations modified from (1) become 

dEr     \dHz 
a^ = r-dF-eU,Ar)E- (7a) 

dEe        dHz 
O't-Qf = —fr  - ^r(r)ET, (7b) 

dHz        ld(rEs)  ,  I dET , ,„ ,_, 

Although it can be shown theoretically that this PML is not perfectly matched (thus the name quasi-PML) [16], 
practically it provides a satisfactory ABC. 

(c) Improved CPML scheme 

Noting that the computer storage requirement for the original CPML is quite high (6 field variables), we seek 
an improved formulation to split equation (3). This can be easily done by rewriting (3c) as 

.    ,„       „  ,     Es dr      1 dEe       1 8Er 

rer or     er Or      res 08 

Therefore, with eg = f/r, and f given by (4), the new split equations to replace (5a)-(5e) are 

iurtEr = > ^T '-, (9a) 
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iuereEt = ——^ -, (9b) 

iuifriEzr = —■, (9c) 

dE 
wfnHzS = E,--^-, (9d) 

Observe that this split set of equations require only 4 unknown field variables: Er, Eg, Hzr, and Hzg. It saves 
about 1/3 computer memory and 1/5 computer time compared to the original CPML implementation in equation 
(5). 

(d) Polar PML scheme (PPML) 
Finally, by setting ar = 1, u>r = f'(r) so that f = r[l + if(r)/rui], equations (9a)-(9b) can be converted into 

time domain as 

*d-§ = -d{H"gT
Hz>)-<ar)Er, (10b) 

^ = -f1-^W^. doc) 
6Hxt EB      ldEr       f(r) 

ß-dT = -T + -r-W-,i—H-' (10d) 

which are exactly the polar PML scheme presented in [18]. The number of unknown field variables is the same as 
equation (9). The effectiveness of the QPML, CPML, and PPML will be compared in the numerical results in III. 

B. 3-D Cylindrical Coordinates 
For 3-D cylindrical coordinates (r, 0, z), the extension is straightforward since the z direction is the same as 

for the Cartesian coordinates. Furthermore, the extension to conductive media can follow the same procedures as 
in [4]. Therefore, based on the improved CPML formulation, the time-domain split equations for conductive media 
can be derived as 

Ar^ + {üre + Ara)E^+ürof   BW(T)*- = ^-J« (11a) 

+ (uze + aza)E^ + wzcr f    £<*>(r)dr = -?§*- - J™, (lib) 

aTt^£r + (Wr£+a'a']Ee)+Ur°/ E»)^dT = -^§f--4r), (iic) 

aj^ + fac + a,^+».*!*   4")(T)dT=^-4'\ (lid) 

ar^- + {wr + aTa)E^+^Ta j    EZ
T
\T)AT = ^ - JZ

T\ (lie) 

Art— + tfU + ATa)EW + nra f   Ez
e\r)dr = JJ, - ^ - Jz*l (llf) 

634 



The other set of equations for updating H can be obtained by duality.  The equations for the other two PML 
formulations can be derived similarly. 

III. Numerical Results 

To show the numerical results of three different PML formulations in polar coordinates, for simplicity, we 
simulate a line source in free space with the derivative of a Blackman-Harris window time function at a center 
frequency fc = 300 MHz. The line source is located at (r, 8) = (15,64) cells in a cylinder whose computational 
domain is NT x Ne = 80 x 256. The radius of the cylinder is 3.2 m which includes 10 PML cells in the radial 
direction. Fifteen receivers are set uniformly around a semi-circle 20 cells away from the origin, and are 8 cells 
apart in 6 direction. The first receiver is located at (20,8) in the grid. 

Time (s) 

Figure 1. Comparison between analytical and numerical results for three PML schemes in polar coordinates, (a) 
Array waveforms. Analytical and numerical results at the 8th receiver for (b) QPML, (c) CPML, and (d) PPML. 

Figure 1(a) shows the excellent agreement between analytical solution and the numerical result of all three 

schemes. The comparison is magnified in Figs. 1(b), 1(c), and 1(d) for QPML, CPML. and PPML at the 8th 
receiver. The reflection is about 1.1%, 0.95%, and 0.91%, respectively. Note that for a fair comparison, we have 
chosen aT = 1 in the quasi-PML case even though the code allows a profile for ar. This reflection can be reduced 
substantially by adjusting ar. 

We model a 3-D case to illustrate the application of the nonuniform cylindrical FDTD using quasi-PML ABC. 
Figure 2(a) shows the xz cross section of a problem in borehole radar detection of vertical and horizontal fractures. 
The background medium is conductive with er = 2.0, ßr = 1-0, and a = 0.001 S/m. The borehole is located in the 
middle of the cylinder with radius 16 cm and er = 4.0, y.T = 1.0, and a = 0.01 S/m. The horizontal fractures has 
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x(m) 

Figure 2. Geometry of a borehole radar detection case using Quasi-PML 

Time (s) 

Figure 3. The scattering waveforms of the two fractures in Figure 2 

a thickness of 3 cm with er = 8.0, pT = 1.0, and a = 0.1 S/m. The vertical fracture parallel to z axis is about 1.73 
m away from the axis and has a thickness of 3 cm and spans 9° in 0 direction with the same er, pr, and a as the 
horizontal fracture. Figure 2(b) shows the xy cross section. Figure 2(c) magnifies the cross section in Figure 2(b) 
to show the grid around the vertical fracture. A magnetic dipole point source is located along the borehole axis 
and is 3.8 m from the bottom boundary, and a receiver array is located also along the z axis. If the scattering field 
of the two fractures was calculated by a uniform FDTD, a grid about Nr x Ne x Nz = 600 x 120 x 350 should have 
been used in order to accommodate the small fractures in different directions. In this work, we adopt a nonuniform 
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grid with Nr x Ng x Nz = 140 x 40 x 100, saving about 45 times CPU and memory. The scattering field is shown 
in Figure 3 with both fractures. 

IV. Conclusions 

Based on a unified presentation, three different formulations of PML in cylindrical coordinates are compared. 
Numerical results from 2-D polar FDTD programs based on these methods agree very well with analytical solution, 
even though the quasi-PML is not a perfectly matched medium. We propose an improved scheme for PML based 
on the generalized complex coordinates method without introducing extra variables and stepping equations, saving 
above 1/3 of the computer memory and 1/5 computation time. A 3-D nonuniform FDTD method is developed 
using the quasi-PML formulation. 
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Abstract 

Because of their superior absorption characteristics, the Perfectly Matched Layer 
(PML) absorbers are used in truncating finite element domains. However, their 
implementation is equivalent to imposing active elements inside the main mesh. 
Consequently, the condition number of the resulting systems deteriorates. In this 
work, an efficient preconditioned generalized minimal residual (GMRES) iterative 
solver is developed and applied to systems truncated by PML absorbers. This it- 
erative scheme is implemented and tested for different cases representing actual 
structures. 

1    Introduction 

The PML layer introduced by Sacks et al [1] is an effective means for truncating finite element 
domains associated with microwave circuits and packaged networks. In addition to its outstanding 
absorption performance characteristics, the PML layer is extremely simple to implement without a 
need to deal with higher order derivatives as is the case with absorbing boundary conditions [2-5]. 
However, PMLs yield finite element systems which suffer from poor conditioning, thus, deteriorat- 
ing the convergence of iterative solvers. More specifically, traditional iterative algorithms such as 
the conjugate gradient and biconjugate gradient methods are very slow to converge and often fail 
altogether to yield a solution. 

In this paper we propose and apply an iterative solver based on the generalized minimal resid- 
ual method (GMRES) for solving sparse finite element systems. A preconditioning scheme is also 
proposed and integrated with the flexible-GMRES algorithm. The preconditioner is based on the 
approximate inverse preconditioning (AIPC) scheme and is typically applied only to those systems 
which exhibit poor convergence characteristics at the initial iteration steps. It is shown that gener- 
ally the GMRES algorithms converge very quickly (within a few iterations) provided that a sufficient 
number of expansion vectors are chosen at the start of the iteration process. Preconditioning also 
plays a crucial role in the speed and robustness of the solution and in the paper we compare AIPC 
with other less robust preconditioned. Applications to actual microwave structures are given to 
provide a measure for the accuracy of the solver and its convergence characteristics when dealing 
with electromagnetic systems associated with packaging applications. 
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2 PML Parameters 

As shown in Figure 1, the PML layer consists of a metal backed dielectric layer where the medium 
of the layer has the following permittivity and permeability tensors 

/  02       0        0    \ 
pr = fr=       0    62    0 (1) 

\  0     0    c2 J 

With the choice 02 = 62 = I/C2 = a - jß, where a and ß are the phase and attenuation factors 
repectively, it has been shown that waves impinging at the air dielectric interface are completely 
non-reflecting for all incidence angles (0 < <j> < 90). Since £ (where k0 is the free space wave 
number), is a non-zero attenuation constant, once in the dielectric, the wave decays to small values 
rather rapidly. Thus the metal backing has a very small effect or nearly no effect on the truncation 
of the domain. Nevertheless, it simplifies the implementation of finite element simulations. 

Throughout the paper and our study, our goal has been the evaluation of the PML performance 
not only in terms of its absorption effectiveness, but also on its effect on system convergence. There 
are various ways and parameter choices which can be used for the evaluation of the system conver- 
gence. For our case we have used the ratio 

_ Number of Iterations before Convergence . . 
FBM system size 

Clearly for small values of r the system is highly convergent. Systems which are associated with 
values of r that approach unity are considered as poorly conditioned. 

2.1    Effect of PML Parameters on Convergence 

Previous studies [6]-[ll] focused on the optimization and understanding of the PML parameters with 
respect to the absorption characteristics of the layer. More specifically, in [6], [11] and [13] curves 
were given for an optimum selection of the attenuation coefficient versus the numerical discretization 
rates and the desired absorption rate. Basically, it was demonstrated that although the PML provides 
for a theoretically non-reflecting layer, its numerical counterpart has some given reflectivity which 
can be controlled by a proper choice of ß, layer thickness and discretization rate. It was pointed 
out that typically a value of ß = 1 provides a good choice for sufficiently thick layers. However, 
so far the effect of the phase constant f- has not been addressed, although numerical experiments 
indicated that a has a much smaller effect on the performance of the PML layer. Nevertheless, our 
initial studies on convergence indicated that a has a noticeable effect on the system convergence 
rates. Therefore, we begun this study by examining the effect of a and ß on convergence for 
the microstrip line truncation shown in Figure 1(b). The curves shown in Figures 1(c) and 1(d) 
indicate that although the absorption of the PML for a < 2 and ß > 1 is good, the corresponding 
convergence curves provide a different story. For large values of a with ß = 1, it is seen that the 
convergence is optimized. However, better convergence is obtained when ß is small. From these 
curves, considerations on both absorption and convergence dictate that a good choice is a = ß = 1. 

3 GMRES Solver 
We look at the performance of the different solvers by implementing and testing three of these itera- 
tive solvers. One was the BiConjugate (BCG) gradient method which is easy to implement and has 
low CPU and memory costs. However, it lacks the robustness and does not guarantee convergence, 
[12] and [16]. For badly conditioned systems (as in the PML case), it may not converge at all. 
The Quasi Minimal Residue (QMR) solver has better convergence features and lower breakdown 
possibilities [12]. Nevertheless, for the same system, both BCG and QMR converge nearly in the 
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same number of iterations but typically QMR has better error history. The Generalized Minimal 
Residual (GMRES) solver is the most robust solver since it guarantees convergence even for poorly 
conditioned systems. Figure 2 displays the superior convergence characteristics of the GMRES solver 
over the BCG and QMR for the microstrip line problem shown in Figure 1(b) (terminated by the 
PML). This type of convergence is typical for most examined FEM systems and therefore GMRES 
[13] was our choice solver. 

In implementing GMRES, one can not ignore the important role of the parameter m which refers 
to the search vectors used for an estimate of the solution. Although m is arbitrary, it is the main 
parameter that controls convergence. In general, larger values of m lead to smaller residuals and 
hence faster convergence. However, CPU and memory costs are directly related to m. For all types 
of GMRES solvers, the memory cost is 0(mN) and the CPU cost is 0(ro2iV), where JV refers to 
the number of unknowns. Therefore, it is essential to have an estimate for m before executing the 
GMRES iterations. If this number is lower than the threshold or minimum value, convergence will 
be extremely slow and may not be achieved at all. On the other hand, if m is too high, storage 
and CPU are wasted. The optimal value of m is directly related to two main factors, the condition 
and the size of the matrix. From the studies [10], [13], [14] and [15], we concluded that the system 
condition has a strong impact on the optimal value of m. One way to reduce the solver dependence 
on m is by employing a good preconditioner. Therefore, our goal is to apply a strong preconditioner 
so that the dependence on m is reduced and this will lead to more stable and predictable convergence 
scheme. 

4    Preconditioners 

Preconditioned are usually applied to improve the system condition and hence achieve faster conver- 
gence. They vary in complexity from the simple diagonal preconditioner (DPC) to the complicated 
approximate inverse preconditioner (AIPC). 

4.1 Diagonal Preconditioner DPC 

The Diagonal Preconditioner (DPC) is the simplest of all. It is simply implemented by dividing each 
row with its largest entry (diagonal element). Thus, it can be implemented with almost no CPU 
or memory costs. Also, it typically delivers a speed up of 30% to 60%. As shown in Figure 2(b), 
the DPC achieves substantial convergence improvements without memory or CPU costs. This was 
already pointed out in previous studies, for example [17]. 

4.2 Approximate Inverse Preconditioner AIPC 

For the general situation, where the FEM matrix is indefinite, standard preconditioning techniques 
may fail due to code breakdown. Also, when this matrix is not diagonally dominant, most precon- 
ditioners (such as diagonal and ILU) may not be effective. The proper preconditioner should have 
some basic features. It should have low computational and memory costs and should retain robust- 
ness even if the FEM matrix is not diagonally dominant. The Approximate Inverse Preconditioning 
Scheme (AIPC) can achieve these features. The idea behind AIPC is to find a sparse matrix M 
which minimizes the Frobenius norm of the residual of the matrix 

R=I-AM (3) 

where / is the identity matrix, M is the AIPC and A is the FEM matrix in the original system 
Ax = 6. According to [12] and [16], this minimization can be achieved in several ways. One of 
the most efficient methods is the Column Oriented Algorithms which minimizes the norm of the 
individual columns of R 

Rj = Ij-AMj (4) 
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where the subscript j denotes the jth column of the corresponding matrix. That is, Mj is found by 
iteratively minimizing Rj for each jth column. One has the choice of setting higher levels for the 
residual to speed up the minimization and come up with different levels of accuracy in finding M. 

5 GMRES-AIPC Solver 

The combined use of the AIPC with the GMRES solver proved quite effective for poorly conditioned 
FEM systems. To show the significance of the suggested scheme, we implemented and tested an 
FEM system (approximately 10000 unknowns). The number of search vectors (basis functions) m 
was scanned from 10-100 and the convergence was examined by recording the total CPU time in 
seconds for the GMRES with no preconditioning, DPC and AIPC. The results of this study are 
displayed in Figure 2(c). From this graph, we can conclude the following: 

• For all values of ra, the total CPU time (code execution time) is less when the AIPC is applied 
(although the per iteration CPU was of course high). This is due to the fact that this type 
of preconditioners improves significantly the condition number of the FEM system and thus 
obtain substantial CPU improvements. 

• The CPU dependence on m is dramatically reduced when the AIPC is invoked. This solves 
the problem of specifying the correct or optimal m to the solver before starting the GMRES 
iterations. As displayed, wide ranges of m have narrow CPU variations. 

6 Microwave Circuit Applications 

After presenting the guidelines for the PML implementation, preconditioners and solvers, we proceed 
to specific applications. In all subsequent examples, we implement the PML absorber with a = ß = 1 
and 12-15 samples per wavelength were used for discretization. Also, the GMRES solver with AIPC 
is applied to solve the resulting linear systems with m in the range of 10 to 40. 

6.1 Microstrip Lines and Feed Probes 

For the microstrip configuration shown in Figure 1(b), we examined the fields under the microstrip 
line as the number of feeding probes was varied. A deembedding scheme based on a transmission 
line analogy is applied to extract the scattering parameters from the FEM simulation [10]. As shown 
in Figure 2(d), the field under the microstrip line increases with the number of probes. This result is 
expected and demonstrates that the PML performance does not affect the feeding mechanism since 
the absorber treats all the feed mechanisms impartially. 

6.2 Spiral Inductor with an Air Bridge 

We modeled the geometry shown in Figure 3(a) using our FEM simulator. Our goal for this example 
was to validate the preconditioned GMRES solver using this benchmark geometry. As observed in 
Figure 3(a), this spiral has fine details to be considered. The results of the scattering parameter Su 
are shown in Figure 3(b) and as seen good agreement between the measured and calculated data 
was obtained. To reduce the FEM matrix size, we assumed that the width of the air bridge is equal 
to that of the microstrip line. 
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Figure 1: (a) Plane wave incidence on an interface between two diagonally anisotropic half-spaces, 
(b) Microstrip Line, (c) The dB absorption and Convergence Factor as Functions of a. (d) The dB 
absorption and Convergence Factor as Functions of ß. 
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Figure 3: (a) Geometry of the Spiral with an Air Bridge,  (b) Comparison Between the Measured 
and Computed data for the Spiral Antenna. 
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I Introduction 

The Multiresolution Time Domain (MRTD) Technique based on cubic-spline Battle Lemarie 

scaling and wavelet functions has shown successful application to a variety of microwave prob- 

lems and has demonstrated unparalleled properties in terms of memory and execution time 

by one and two orders of magnitude respectively. This technique is used to model open and 
shielded propagation problems [1, 3] and non-linear optical applications [2]. In addition to time 
and memory, the most important advantage of this new technique is its capability to provide 

space and time adaptive meshing without the problems encountered by the conventional Finite 

Difference Time Domain(FDTD) [4] method. In this paper, an efficient non-split formulation 

of the PML absorber [5] for the Battle-Lemarie based MRTD scheme is presented. This formu- 
lation is validated and applied in the analysis of a two-dimensional parallel-plate waveguide 
geometry offering a numerical coefficient of reflection below -90dB. Additionally, examples for 

a three-dimensional patch antenna geometry are given. 

II Derivation of the MRTD equations for the PML layer 

Without loss of generality, the PML Absorber equations will be presented for a homogeneous 
medium for TM propagation in 2D. The Absorber formulation for TE propagation is straight- 
forward. Assuming that the PML area is characterized by (to,n0) and electric and magnetic 
conductivities (OE,<T#), the TM equations can be written 

(1) 

(2) 

(3) 
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PML cells only to the z-direction are considered. Equations for PML cells in the x- and in- 

directions can be derived in a similar way. For each point z of the PML area, the magnetic 

conductivity aH needs to be chosen as  [5]: 

gg(z) = °H{Z) ,4. 

Co He 

for a perfect absorption of the outgoing waves. A parabolic spatial distribution of OE,H, 

<TE,H(
Z
) = ffB°S{1 ~ T)

P
        . with P=2 for 0 < z < <5 = PML thickness        (5) o 

is used in the simulations, though higher order distributions (e.g.Cubic p=3) can give similar 

results. The PML area is terminated with a PEC and usually has a thickness varying between 

4-16 cells. The maximum value <Tga3; is determined by the designated reflection coefficient R at 

normal incidence, which is given by the relationship 

R = e-ki° "E{')dz = e'^W) . (6) 

The electric and magnetic field components incorporated in these equations are expanded in a 

series of Battle-Lemarie scaling and wavelet functions in both x- and z-directions. For example, 

Ex can be represented as: 

+<X> 

k,l,m 

Ex{x,z,t)   =       ]T     kEffi2jnhh(t)<t>i+1/2{x)<ßm(z) 

+     E       E        kE*£/2,mhk{t)<l>l+l/2(x)ll>i,m(z) 
i   k,l,m——<x> 

+     E       E       *^tftmMO0y+l/2(*)M*) 
:'    k,l,m=:—oo 

+ E   E   *0*Wfe./»W^W (?) 
ij k,l,m=~co 

where <f>m(x) = 4>(-§^ — m) and ipi,m{x) — ipi(-^ — m) represent the Battle-Lemarie scaling 

and i-th order resolution wavelet function respectively in space and hk{t) represent rectangular 

pulses in time. kEf£" and i+1/2.ff,"*'' with K = x,y,z and [i, u = <j>,rj) are the coefficients for 

the field expansions in terms of scaling and wavelet functions. The indices /, m and k are the 

discrete space and time indices related to the space and time coordinates via x = lAx,z = mAz 

and t — kAt, where Ax,Az are the space discretization intervals in x- and z-direction and At is 

the time discretization interval. For an accuracy of 0.1% the above summations are truncated 

to 16-24 terms. For simplicity, expansion only in scaling functions will be considered. Wavelets 

are implemented in a similar way. Upon inserting the field expansions, Maxwell's equations 
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are sampled [3] using pulse functions as time-domain test functions and scaling functions as 

space-domain test-functions and the following non-split formulation of the fields for the PML 
region is derived: 

•-.-     l+l/2,m      -     e      E *%+l/2,m 

1        m+8 
e (Az     l^i    aV ^+l/2W(+l/2,.'+l/2; 

i'=m—9 

fc+lty.m+1/2     -     e     £ *Am+l/2 

m+l/2 1 '+S 

,      -o.5<7™+1/': At/t» r *    v^  „c.-^ try,** \ 
+     e £ (AIL   "(')HI/2%1/!IB+I/2) 

"x i'=l-9 

*+l/2«/+i/2,m+l/2     -     e *-l/2-H(+l/2,m+l/2 
1       1+8 i       m+8 

+   e-°^*°(^- £ a(i%E*%+1/2--L   £   a(i')kE*f)        (8) 
"X .'=1-9 ^Z .-'=m-9 

where the terms erj[!tf are given by Eq.(12). 

A parallel-plate waveguide of width d=48 mm, terminated at both ends by PML, is used to 

validate the proposed algorithm. A TM source with a Gabor time variation is excited close to 
one side of the waveguide. The benchmark MRTD solution with no reflections is obtained by 

simulating the case of a much longer parallel-plate waveguide of the same width to provide a 
reflection-free observation area for the time interval of interest. A quadratic variation in PML 

conductivity is assumed for all cases, with maximum theoretical reflection coefficient of 10~5 at 

normal incidence. Numerical reflection is observed for the frequency range [0,0.9/c
TMl] (TEM 

propagation) where /c
TMl = ^ = 3.125 (GHz) is the cutoff frequency of the TMX mode. It 

can be seen from Figs.(l)-(2) that for 8 PML cells and CT£
ax=0.4 S/m it is 5n <-65 dB and 

for 16 PML cells and afOI=0.2 S/m the reflection is smaller than -91 dB. Thus, the non-split 
PML absorber can be used effectively in the simulation of antennas and active elements using 
MRTD. 

Ill    Application of PML to the Analysis of Antenna Ge- 

ometries 

MRTD can successfully model both planar circuits [6] and resonating structures [7]. Recently 

the techniques developed for the simulation of both structures are combined to model a three- 

dimensional patch antenna geometry [8]. Full three-dimensional MRTD analysis is used, with 

PML expanded through three coordinate directions. The procedure to derive an equation for the 
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At PML cells along z ^ max max wmax 

FDTD (60 x 100 x 16) 1.3297 • 10-13s 6 3.0 3.0 3.0 
MRTD(30 x 50 x 9) 1.6008-10"13;! 2-6 3.0 3.0 11.53 
MRTD (20 x 20 x 9) 1.3297 • W~13s 6-10 3.0 3.0 11.53 

Table 1: Computational Parameters. 

three-dimensional MRTD scheme, with PML along all three coordinate directions is presented 

in [8]. 
The patch antenna used in our simulations has the dimensions 12.45mm x 16mm, with a 

microstrip line 20 mm long used as a feed. A Gaussian pulse 4 mm from the PML layer is used 

to excite the microstrip. The substrate has a thickness of 0.794 mm and a relative dielectric 

constant equal to 1. An FDTD mesh of 60 x 100 x 16 is compared to MRTD grids of 30 x 50 x 9 

and 20 x 20 x 9, which exhibit savings of memory over FDTD on the order of 7.22 and 33 

respectively. Note that these values do not include the PML layers. Figure 3 shows a comparison 

plot of calculated Su data for the three cases listed above. Six cells of PML are added along 

the ±x, ±y and +z directions with c^ax = a^y
al = 3.0 and a^lx = H-53 for all cases. The time 

discretization interval used for the MRTD 30 x 50 x 9 scheme is At = 1.6008 • 10_135 while the 

MRTD 20 x 20 x 9 scheme uses a time discretization interval of At = 1.42384 ■ 10~13s. FDTD 

uses a time discretization interval of At — 1.3297 • 10_13s. In all three cases the simulation is 

performed for 10000 time steps. This information is summarized in Table 1. 

Figure 4 shows a comparison of S\\ data for different numbers of z-directed PML layers for an 

MRTD discretization of 30 x 50 x 9. Note that the Su values correlate very well even for only 

2 PML layers in the z-direction. Figure 4 shows a comparison of S\\ data for different numbers 

of z-directed PML layers for an MRTD discretization of 20 x 20 x 9. Once again the values of 

S\\ show good correlation. 

IV    Conclusion 

An efficient PML absorber in non-split formulation is presented for the MRTD Scheme based 

on cubic spline Battle-Lemarie scaling functions. This absorber is used effectively to model 

an antenna geometry providing extremely small numerical reflections. In comparison to Yee's 

conventional FDTD scheme, the proposed MRTD scheme coupled with the PML absorber 

offer memory savings by a factor of 12-30 and execution time savings by a factor of about 

3-5 maintaining a better accuracy for S-parameter calculations. For structures where the edge 

effect is prominent, additional wavelets can be used to improve the accuracy when using a 
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coarse MRTD mesh. 

V    Acknowledgments 

This work was made possible by ONR contract N00014-95-1-1299 and ARO contract DAAH04- 

95-1-0321. 

References 

[1] M.Krurapholz, L.P.B.Katehi, "MRTD: New Time Domain Schemes Based on Multiresolution Analysis", 

IEEE Trans. Microwave Theory and Techniques, vol. 44, no. 4, pp. 555-561, April 1996. 

[2] M.Krumpholz, L.P.B.Katehi, "MRTD Modeling of Nonlinear Pulse Propagation", to be published at the 

IEEE Trans. Microwave Theory and Techniques. 

[3] E.M.Tentzeris, R.Robertson, M.Krumpholz, L.P.B.Katehi,  "Application of the PML Absorber to the 

MRTD Technique", Proc. APS 1996, pp. 634-637. 

[4]  K.S.Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic 

media", IEEE Trans. Antennas Propagation, pp.302-307, May 1966. 

[5] J.-P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves", J.Compui. 

Physics, vol. 114, pp. 185-200, 1994. 

[6] E. Tentzeris, M. Krumpholz and L.P.B. Katehi, "Application of MRTD to Printed Transmission Lines", 

Proc. MTT-S 1996, pp. 573-576. 

[7]  R. Robertson, E. Tentzeris, M. Krumpholz and L.P.B. Katehi, "Application of MRTD Analysis to Dielectric 

Cavity Structures",Proc. MTT-S 1996, pp. 1840-1843. 

[8]  R. Robertson, E. Tentzeris, and L.P.B. Katehi, "Modeling of Membrane Patch Antennas using MRTD 

Analysis", Proc. APS 1997, pp. 126-129. 

651 



8 PML Cells - Non-split - TEM 

~  -80 

1 1.5 2 
Frequency [GHz] 

Figure 1: 8 PML cells. 
16 PML Cells - TEM - Non-Split 

-130- 

to i1 

ft  I' 

ji   I 

! ! S '   ' 

! I 
i i 

1 1.5 
Frequency [GHz] 

Figure 2: 16 PML cells. 

652 



-10 

_-15 m 

-20 

-30- 

\ <^±                  > - 

\        / -A   / 

- W''             i ' 

i « ,'                       J 

11 1 

- 'I                 L 

[                  ' 
i 

-  FDTD (60x100x16) 

- - MRTD(20x20x9) 

1 

1 

-  MRTD(30x50x9) ; 

0 2 4 6 8 10 12 14 16 18 20 
Frequency (GHz) 

Figure 3: Sn comparison plots for a patch antenna 

-5- 

-10- 

-15- 

-20- 

f 
3 

:-25- 

> 
-30- 

-35- 

-40- 

-45 - 

-50 

.,.,,.            „,,,    ,                                .         fU^^J    ,„               ,                                                        , 

- f\ r <^*. - 

- 

if 

\   f' v 

if 
'/ 

- 
■ 

 2 z-directed PML cells 

— 4 z-directed PML cells 

 6 z-directed PML cells - 
i           i            <            i 

0 2 4 6 8 10 12 14 16 18 20 
Frequency (GHz) — 

Figure 4: MRTD(30 x 50 x 9) Su plot for varying PML layers in the z-direction 

653 



Or 

-5- 

-10- 

-15- 

-20- 

r-25- 
j 

-30- 

-35- 

-40- 

-45 - 

-50 

 -,-v- -|      ■■■■ —| 1 1 1 1 ]  i 

/^°<rt>^^^:^^ix^ 
Av 

V _ 
v            /\       y^\ 
\\                     A-^-A         /r'     A 
\i            /''  N \    /»        A \\       —    / '       \ \    /■,             A V,  /V'       \V/'/        A 1 /"*   \ 
V / / /        •»■'        \ '    x 

\\    i                W/             4 / /H . 

V' w 1'          <i 
"   •' -'           v 

- 

 6 z-directed PML cells 
- - 8 z-directed PML cells 

 10 z-directed PML cells 

- 

 1 i i i i i i i  

- 

8 10 12 
Frequency (GHz) 

14 16 18 20 

Figure 5: MRTD(20 x 20 x 9) Sn plot for varying PML layers in the z-direction 

654 



A PML-FDTD Algorithm for General Dispersive Media 
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Abstract A three-dimensional (3D) finite-difference time-domain (FDTD) algorithm with perfectly 
matched layer (PML) absorbing boundary condition (ABC) is presented for general inhomogeneous, disper- 
sive, conductive media. The modified time-domain Maxwell's equations for dispersive media are expressed 
in terms of coordinate-stretching variables. The recursive convolution (RC) and piecewise linear recursive 
convolution (PLRC) approaches are extended to arbitrary dispersive media in a more general form. The 
algorithm is validated for homogeneous and inhomogeneous dispersive media, and excellent agreement be- 
tween the FDTD results and analytical solutions is obtained with both RC and PLRC approaches. We 
demonstrate the applications of the algorithm by several examples in subsurface radar detection of mine-like 
objects, cylinders and spheres buried in a dispersive half-space, and a three-layer medium with a dipping 
interface. 

I. Introduction 

Finite-difference time-domain (FDTD) method, as one of most powerful computational methods in 
electromagnetics, has been widely used to simulate wave propagation, scattering, and radiation. In the early 
development and applications of FDTD, the parameters of media are constants independent of frequency. 
When the media are frequency-dependent, especially for those encountered in the applications involving 
earth, biological materials, artificial dielectrics, and optical materials, this frequency dispersive property will 
significantly change the electromagnetic response in the media. In these cases, the original FDTD algorithm 
needs to be modified to account for the frequency dispersion of the media. 

In recent years, three major frequency-dependent FDTD methods have been proposed: recursive con- 
volution (RC) [1,2], auxiliary differential equation (ADE) [3,4], and Z-transform (ZT) [5]. The stability and 
error analysis for various frequency-dependent FDTD methods is given in [7, 8]. It is reported that among all 
the above frequency-dependent FDTD methods, the RC and its modified version, piecewise linear recursive 
convolution (PLRC) methods require least computer storage, and the PLRC, ADE, and ZT approaches have 
better accuracy than the RC approach [6]. In addition, the RC and PLRC approaches allow to treat a 
wide variety of dispersive media in a unified form, while the ADE and ZT approaches require the different 
formulations for different kinds of dispersive media. 

As in the FDTD method for non-dispersive media, when applied to an unbounded domain, the frequency 
dependent FDTD algorithm calls for absorbing boundary conditions (ABCs) to truncate the computational 
domain. Among all the existing ABCs, the perfectly matched layer (PML) is most effective, which gives 
zero reflection at the absorbing boundary for all frequencies and all angles of incidence [9, 10]. Moreover, 
the PML is ideal for parallel computation. In addition, the PML ABC can be applied to the domain where 
a dipping interface exists. Most previous FDTD algorithms on dispersive media employed non-PML ABCs, 
such as Mur's ABC and Liao's ABC, and most PML ABCs are limited to lossyless an non-dispersive media. 
Only recently, the PML ABC has been extented to lossy media and dispersive lossy media [11-14]. 

In this paper, a 3D FDTD algorithm is presented for general inhomogeneous, dispersive, conductive 
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media using the coordinate stretching approach, and the RC and PLRC approaches are extended to general 
dispersive media in a more unified form. Three common types of dispersive media, i.e., Lorentz media, 
unmagnetized plasma and Debye media, can be treated as special cases of our general formulas. Several 
validation and application examples are also given. 

II. Formulation 

A. Modified Maxwell's Equations for Dispersive Media 
Consider an isotropic, conductive, inhomogeneous, linear permittivity dispersive medium. Using the 

coordinate stretching approach [10] and following a similar procedure as in [12], the modified Maxwell's curl 
equations with the split fields (TJ = x, y, z) in the time domain can be written as 

^fixE) = -a,^-^,H('l-MW (1) 

y(fj x H) = a„^l + Wi?D(i> + ai)<rEM + Wi)0. I E(») dt + jM_ (2) 

Equations (1) and (2) consist of a total of 12 scalar equations, since both E'"> and H''' have two scalar 

components perpendicular to 77, and D'1'' also has the two corresponding components due to the constitutive 
relations of the medium. These equations are insufficient to solve the total 18 field components. The 
remaining equations will be given by the constitutive relations. 

B. Recursive Convolution Approaches 
Noting that the constitutive relations take the same form for all split components, we omit all the 

superscript (JJ) in this subsection for simplicity. 
For a linear dispersive medium, the relationship between the electric flux density and the electric field 

intensity in the time domain is described by 

t 

D(r) = £0f»oE(4) + €0  f E(r) X(t -r)dr (3) 
—00 

where eo is the free-space permittivity, £„, is the relative permittivity at u -> 00, and x is the electric 
susceptibility. 

The frequency domain susceptibility functions, as the transfer function of a linear system, can be 
generally expressed as a ratio of two polynomials [1] or in a fractional form, i.e., 

M' M M    r 

XM = J>W£C,S
8
 = £:TT- (M>M-) (4) 

,=1 ,=1 ,=1 5      S« 

where s = -iui, and sq and Tq are the complex poles and the corresponding residues. Then the corresponding 
time domain susceptibility functions can be written as 

jv N 

x(t) = £>[*,(*)] = Y.MWm] (5) 
9=1 ?=1 
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where U(t) is the unit step function. In (5), N = M, iJ, = T, when all s, and T, are real; and N = Af/2, 

Rg = 2Vq when there are M/2 complex-conjugate pole pairs (such as Lorentz media) which satisfy T,(s,) = 

TJ(sp since x(t) is a real function. Note that when s, and T, are real, x, and all other derived functions 
are also real. 

To simplify (3), we first introduce a unified piecewise approximation to E(i) over the time interval 
t e [mAf, (ro + l)Ai] as follows, 

Eft) » E(m + D + K.[E(T" +1~E(m)1 [t - (m + l)At]. (6) 

It is noted that Equation (6) corresponds to the recursive convolution (RC) [1] when if,, = 0, and to the 
piecewise linear recursive convolution (PLRC) [2] when K„ = 1. Combining these two approximations in 
the form of (6) is convenient for us to compare the numerical accuracy of RC and PLRC approaches in a 
consistent way. 

Using (5) and the unified approximation (6), the convolution integral in (3) is then transformed into 
the discrete convolution summation, 

N  n-1 

D(n) = eo<=ooE(n) + e0 ^ ^ Re{E(n - m)*?(m) 
q=l m=0 

+ [E(n-m-l)-E(n-m)]4(m)} (7) 

where 
(m+l)At (m+l)At 

X,(m)=     J     x,{r)dT,       |,(m) = -±     J    (T - mAi)*,(r) dr. (8) 

It can be shown that 

XM) = *,(0K'mA1,       |,(m) = |,(0)e«'raÄt (9) 

and 

f^Af, fKa^At. forSa = 0; 

*(0) = 1Äi, .Af    „ W) = U„ (10) 
I ^7(        ]' {t| I1 - ^ - s'At)e8'A!] • for *< * ° 

Similar to [1] and [2], we introduce a new variable #,(n) so that 

n-l 

*«(") = E {[*«(°) - &(°)] E(n - m> + 4(0)E(n - m - 1)} e*«roAi. (11) 
m=0 

Then (7) can be written as 
jv 

D(n) = c0e«.E(n) + e0 £ Re[*,(n)]. (12) 

Finally, we can obtain 

»,(" + 1) = K,(0) - |,(0)]E(n +1) + |,(0)E(n) +*,(n)es'At (13) 
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and 

D(n + 1) =e0 I £00 + £Re [**(°) - f«(°)] \ E(n + !) 

+ <=o £ Re [&(°)] E(") + *o £Re [*«(n)e5,A'] ■ (14) 

Up to this point, the recursive convolution formulation is derived for general dispersive media. To use 
it, a set of Rq and sq need to be determined in advance for a given medium. For example, these parameters 
for Debye media are given by 

XM = fe - «=.) f; T^r,   xw = («. - c) f: ^üüW (is) 

it, ,        s, = -- (16) 

where es is the relative static permittivity, r, is the Debye relaxation time constant, and G, is the pole 
amplitude. 

It is worth pointing out that for an arbitrary linear dispersive medium, when the discrete spectral 
magnitude data are available for the susceptibility of the medium, the frequency-domain Prony method 
(FDPM) can be used to find directly the poles and residues, i.e. R, and s, [15]. Therefore, for an arbitrary 
dispersive medium there is no need to fit the dispersive relation with Debye or Lorentz models. 

C. Discretization 
With the help of the recursive convolution equations (12)-(14), we can proceed to solve Maxwell's 

equations by using the Yee's algorithm to discretize the split equations (1) and (2). We obtain 

(I*+ ^)H(,,(B+b = -Jj wx E(n)1 - fe -11) H<,)(n - b ~ M("(n)       <17> 

c^E^in + 1) = j- U x H(n + i)l + #<">(n) + ^E«)») - <7u,AtE^'(n) - J<">(n + |) (18) 

and 

where 

*W(n) = eogR,{[(S-^)-(^ + ^)e-^ ]*<<>(„)} (19) 

ti?\n) = E(p\n - 1) + ^E(")(n) + ^(n - 1) (20) 

and 

c<"> =°- [a, + 2*+,At] + (^ + Si) e„ |£oo + f) Re [*, (0) -1,(0)] j . (22) 
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Table I Parameters for Debye Media 

Medium I Medium II 

too = 3 e„, = 3.7677 
es = 4.5 c, = 20.2677 
n = 6.4 x 1CT10 s Ti = 1.1614 x 10~u s 
Gi = 1 Gi = 1 
a = 0.005 S/m a = 0.1165 S/m 

Equations (17)-(20), together with (13), form the FDTD time-stepping equations. 

Note that when updating E field, it appears that the two steps E(n) and E(n - 1) are needed in the 
equations (13) and (20). The storage requirement of E(n - 1), actually, can be avoided by means of a 

temporary variable [2]. At this point, the implementation of the algorithm requires storage for E^', H(,,), 

Ey", and 9f'. Because of introduction of the PML, each of the above quantities has 6 components. While 

E, is due to the conductivity of the media, *, results from the frequency dispersion of the media. In 

addition, in general a complex array *, (except for Debye'media and unmagnetized plasma where it is a 
real array) is needed for each q. Therefore, the treatment of the dispersive media requires more memory 
than that in non-dispersive media. 

M. Numerical Results 

Based on the algorithm proposed in the previous section, a 3D-FDTD Fortran program is developed. 
The PML equations are applied to both the interior region and the matched layers. Ten cells of PMLs are 
used outside the interior region as the absorbing boundary condition in all computations. 

In following examples, an electric dipole directed in x direction is used as a source, and the field 
component Ex is measured at a series of receiver locations. The time function of the source is the first 
derivative of the Blackman-Harris window function [12]. The central frequency of this function is defined as 
fc = 1.55/T where T is the duration of the source function. 

A. Validation 
To validate the algorithm, we consider two group of testing cases: (i) a homogeneous dispersive medium 

and (ii) a dispersive sphere embedded in another dispersive or non-dispersive background medium. The 
analytical solutions are available for a dipole source in both cases. Three typical kinds of media, i.e. Lorentz 
media, unmagnetized plasma, and Debye media, are under consideration. In these testing examples, the 
source is located in the origin of coordinates, and the Ex field component at 10 locations is displayed. 
The field is normalized with respect to the peak value at the fourth receiver in all Ex waveforms. In the 
calculation of FDTD, the solution region is divided by 64 x 64 x 64 cells. The FDTD numerical results are 
compared with the analytical solutions. Because of limited space, only the results for Debye media are given 
below. The parameters for Debye media are given in Table I. The complex permittivity of two Debye media 
is plotted as a function of frequency in Fig. 1. 

Fig. 2 shows the Ex waveforms for a homogeneous Debye medium (I), and-Fig. 3 gives the results for 
a Debye sphere (Medium I) in an unbounded Debye medium II. ' 

In all the testing examples, an excellent agreement between the FDTD numerical results and analytical 
solutions is observed. It is interesting that both results of RC and PLRC display excellent agreement with 
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the analytical solutions. 

B. Applications 

To demonstrate the effectiveness of the algorithm, we consider several applications of subsurface radar. 

The earth is modeled by Debye dispersive media in all examples. For clarity, only the scattered fields, 

obtained by subtracting the fields in the absence of buried objects from the total fields, are shown. In these 

examples, the sources are located in air-ground interface with (x,y) = (0,0), and the receivers are located 

on the air-ground interface along x-axis. The central frequency of the source is 80 MHz. The computational 

region is divided into 200 x 64 x 64 cells or 128 x 64 x 64 cells. 

First, we consider two rectangular cylinders and a PEC sphere buried in a half-space of Debye medium 

I. The cylinders are with air and Debye medium II, respectively. Fig. 4. shows the geometry of the problem 

and the scattered Ex waveforms received at 181 locations. 

Next, we consider the mapping of a dipping interface in ground-penetrating radar detection application. 

The geometry of the problem is shown in Fig. 5. The upper, middle, and lower media are air, Debye medium 

I, and Debye medium II. The Ex waveforms are recorded at 109 locations, and the scattered fields are shown 
in Fig. 5. 

In all application examples above, the scattered fields from the buried objects or layers are clearly 

displayed. For the last problem with a dipping interface, other ABCs will become unstable as soon as the 

waves propagate to the boundary. The PML ABC provides an unparalleled advantage in this aspect. 

IV. Conclusions 

We present a 3D FDTD algorithm with the PML absorbing boundary condition for general inhomoge- 
neous, dispersive, conductive media. The modified time-domain Maxwell's equations for dispersive media 

are expressed in terms of the coordinate-stretching variables. A single formulation is developed to include 

recursive convolution and piecewise linear recursive convolution for arbitrary dispersive media. We validated 

the algorithm for both homogeneous dispersive media and a dispersive sphere in another dispersive or non- 

dispersive background medium for three typical kinds of dispersive media. Excellent agreement between 

the FDTD results and analytical solutions is obtained for all cases. Several applications are demonstrated 

for subsurface radar detection of cylinders and a sphere buried in a dispersive half-space. Furthermore, a 

problem with a dipping interface which cannot be modeled by non-PML ABCs, is simulated. The algorithm 

proposed is ideal for parallel computation since the same code is shared by both the interior computational 

region and the outer matched layers. Because of their generality, the algorithm and computer program devel- 

oped can be used to model biological materials, artificial dielectrics, optical materials, and other dispersive 
media. 
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Abstract 
A new method of extraction of multimode S-parameters from numerical 

electromagnetic analysis is presented. The method is based on the idea that any propagated 
eigenwave of a line can be excited without reflection using a proper system of surface 
sources. Parameters of the sources, found from analysis of segments of the line, are used to 
calculate generalized S-parameters of discontinuities in this line. The procedure is named 
as a method of simultaneous diagonalisation (MoSD). The main advantages of the MoSD 
are perfect matching of a particular mode and the lack of the necessity of calculating line's 
eigenwaves. The method is illustrated by analysis of a segment of non-symmetrical coupled 
microstrip line and an open end in this line. The method of lines and a set of rectangular 
excitation regions in partial metallization planes are used to solve this problem. 

Introduction 
A complete electromagnetic (EM) analysis of an entire structure is the best way to 

obtain the characteristics of a passive microwave structure. Practically, this may be 
impossible because of undue computer resources requirements. In such cases it is 
convenient to divide the structure into components that can be analyzed separately and then 
combine the matrices that describe the separate parts. These matrices (Y, Z, S etc.) are, in 
general, multimode and can be obtained easily if eigenwaves of transmission lines 
corresponding to cross-sections formed in the dividing process are involved in the 
numerical procedure. However, eigenwaves are sophisticated, calculating them is a 
problem, and direct usage of them leads to unnecessary analytical and numerical 
difficulties. As an alternative, it is possible to use simpler and more natural functions in 
the regions where the eigenmodes should be excited or matched. The method of 
simultaneous diagonalisation (MoSD) has been developed to transform the functions in the 
excitation regions to the space of eigenwaves and to match each eigenwave perfectly. 

The MoSD is based on EM analysis of two (or more) segments of line corresponding to 
a circuit component port to be de-embedded. These segments have different lengths and 
have excitation regions at the opposite ends with uncertain boundary conditions. The result 
of EM analysis is a set of Y-matrices relating excitation functions coefficients of electric 
and magnetic fields. These matrices transformed from the space of the excitation functions 
to a space of eigenmodes are set equal to Y-matrices describing independent modes 
propagated in continuous part of the line segments. It gives the basic non-linear system of 
equations relating propagation constants and characteristic impedances of the modes, a 
matrix of transformation from the excitation space to the mode's space (transformation 
matrix) and some auxiliary matrix that helps to match propagated modes perfectly 
(compensation matrix). Solution of the system is based on simultaneous diagonalization of 
Y-matrix blocks. Boundary value problem for the component or discontinuity is formulated 
in the same way as for the line segments. Each port of the discontinuity is substituted by 
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excitation regions and could be de-embedded using pre-calculated parameters of the line 
and transformation and compensation matrices. 

The nearest analogue of the proposed technique is numerical de-embedding procedure 
suggested by J. Rautio [1] and in comparison with it the MoSD makes it possible to 
separate propagated modes and eliminates completely reflection of modes from simple line 
segment, that increase accuracy of analysis of discontinuities. As a by-product, the 
generalization of the "TEM equivalent impedance" [2] on multimode case is obtained. The 
MoSD was originally proposed for analysis of a single microstrip line discontinuities [3] 
and then generalized to a multiconductor or multimode line case [4]. The method was used 
in the computer program TAMIC-I [5] and then in the program =EMstar= [6] for 
calculation of the characteristics of discontinuities in multiconductor microstrip lines, 
slotlines, finlines, and coplanar waveguides. 

Theory 
Let us consider an arbitrary discontinuity formed by a set of semi-infinite transmission 

lines approaching to it. The structure is bounded by electric or magnetic walls and contains 
arbitrary number of lossless dielectric or magnetic and (or) metal regions inside. The 
discontinuity region can also contain some lossy objects. The problem of discontinuity 
analysis can be reduced to a problem in an enclosed volume. To excite and match 
propagated eigenwaves of the approaching lines it is possible to use auxiliary sources. The 
sources can be placed in cross-sections of the lines at the outer boundary of the volume or 
in some regions of the cross-sections or near the cross-sections. As this take place, the rest 
of the surfaces (or whole surfaces) of the cross-sections at the outer boundary will be 
simulated as magnetic or electric walls. Thus, in a general case, we have a 3-D boundary- 
value problem for the Maxwell's equations with uncertain boundary conditions in the 
sources regions. 

To find characteristics of the sources we need to analyze separately segments of the 
lines approaching to the discontinuity. Each segment should have the same position of the 
sources regions at the opposite sides as corresponding input in the discontinuity. Let us find 
relation between the EM field components in the sources regions for a line segment of 
length /. To do this, we represent the tangential electric and magnetic field components on 
the surface of the sources regions as follows: 

Eu-ZUÜE.       Hu=Xi;2H„ (1) 

where E„, H„ - orthogonal basis functions defined in the sources regions. The subscripts 1 
and 2 correspond to the regions at the opposite sides of the line segment. The basis 
functions are normalized so that unknown coefficients UJ2 and I°2 have dimensions of 

voltage and current respectively. Suppose the problem is solved by some numerical method 
that is best suited to a given line type. As a result of the solution we obtain an admittance 

matrix Y(/) relating the coefficients Ui,2 =[u°2,n = l,NJ and Ii,2 =|l"2,n = l,NJ in the 

sources regions: 

Y„(0   Y12(/) 

Y,2(0   Ya(/) 
(2) 
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Assuming that there are only K propagated modes in the structure, and it is possible to 
transform currents and voltages defined in the sources regions to a space of currents and 
voltages of the line eigenmodes, we obtain the following matrix equations: 

F-[Yn(/)-G]-F'=^[z-' .dh(M),k = £K] 

F-Y12(/)-F' =diag[-Z;' -cosechG^/J.k^]        (3) 
Here F is transformation matrix, ' denotes Hermitian transposed matrices. The right-hand 
sides of the equations (3) are diagonal matrices of the order K. An eigenmode number k is 
described by a model line with electric length ßjk and characteristic impedance Zk. The 
order of the matrices Y,, and Y12 must not be less than K. It is assumed, that the 
eigenwaves do not interact to each other over a line segment less than or equal /. Matrix G 
or compensation matrix accounts for an effect of the evanescent waves near the sources 
regions. The decay of these waves must be much shorter than /. Let us lengthen the 
investigated line segment by a value A/ so, that the relative positions of the sources 
regions and the segment butt-ends remain unchanged. Keeping the expansion (1) in the 
sources regions, we solve the boundary-value problem again and obtain a linear system of 
equations similar to (2) with the admittance matrix of the lengthen line segment Y(/+A/). 
It is supposed that the lengthened segment has the same model representation with 
unchanged matrices F and G and with increased electric lengths of the model lines 
describing eigenwaves. In this case, the next system of matrix equations for blocks of the 
matrix Y(/ + A/) can be written: 

F-[Y„(/ + A/)-G]-F' =diag[z? -cth(Ä(/* +A/)),k = l^] 

F • YI2 (/ + A/) • F' = diag[- Z"1 • cosech(Ä (lk + Al)), k = Ljc]    (4) 

Thus, we have obtained the system of nonlinear matrix equations (3,4) with the 
unknown matrices F and G and parameters of the model lines or eigenwaves. The matrix F 
could be found as a matrix that transforms the matrices Y12 (/) and Y12 (/ + A/) to diagonal 
ones simultaneously. In the case when N = K these matrices are symmetric and to 
diagonalize them and to find F the generalized Jacobi's method may be used. After 
diagonalization we can find the non diagonal elements of the matrix F • G • F' from the 
first equations of the system (3) or (4), and after this we derive K systems of four simple 
trigonometric equations for each eigenwave with unknown variables Zk, J3k, /k and gt 

(diagonal element of the matrix F • G • F'). The solution of these systems may be found 
analytically [3,4]. 

After analysis of all different lines approaching to the discontinuity we can analyze the 
discontinuity itself. As a result of the solution of this problem we obtain an admittance 
matrix Yu relating the coefficients of expansion (1) in all sources regions. Now the 
normalized admittance matrix relating currents and voltages of the eigenwaves of the lines 
approaching to the discontinuity is determined by: 

Y = Zf-Fu-(Ya-GJ-F:-Zj'2 

Here Fu, Gu are block-diagonal matrices that unite the transformation matrices and the 
compensation matrices found for each input. Z0 is a diagonal matrix that unites the 
characteristic impedances of the eigenmodes of the input lines. 
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Numerical Examples 
As test examples we consider a problem of calculation of the characteristics and 

scattering parameters of a segment of non-symmetrical coupled microstrip line and a 
problem of calculation of S-matrix of an open end in this line. To solve corresponding 3D 
EM boundary-value problem, the impedance-interpreted method of lines is used [4,7-9]. 
Figure 1 shows a segment of the coupled microstrip line to be analyzed. 

w2 

,Lwl 

hi h2 

eps2 

epsl 

Fig. 1 A segment of non-symmetric coupled line. 

To excite two dominant quasi-TEM eigenwaves in the line, we use the surface current 
sources located between line conductors and electric side-walls (hatched regions in the 
Fig.l). Size of the regions along line is equal to size of one grid cell. Surface currents are 
directed along line. The results of EM analysis of the line segment with parameters 
a=b=1.2mm., wl=s=0.05mm, w2= 0.1mm, hl=0.2mm, epsl=l, h2=2mm, eps2=12.85 at 
frequency 60 GHz are given in table 1 for different grid parameters. 

Table 1. 
dx dy Zl, 

Ohm 
Pi Z2, 

Ohm 
p2 |Sll/ll[ |Sll/22| ZS12/11, 

deg. 
ZS12/22, 
deg. 

a/64 wl 84.589 3.1528 32.579 2.6792 6.86e-10 8.09e-09 -272.59 -231.64 
wl/2 . 88.032 3.1345 37.005 2.6766 2.44e-10 9.23e-09 -271.01 -231.42 
wl/3 89.240 3.1284 38.660 2.6760 5.67e-10 9.66e-09 -270.48 -231.36 
wl/4 89.856 3.1254 39.523 2.6757 7.30e-10 9.88e-09 -270.22 -231.34 
wl/5 90.229 3.1236 40.051 2.6755 8.30e-10 1.00e-08 -270.07 -231.32 
wl/6 90.480 3.1224 40.408 2.6754 8.96e-10 1.01e-08 -269.96 -231.31 

a/128 wl 84.546 3.1509 32.567 2.6788 6.14e-10 8.09e-09 -272.427 -231.612 
wl/2 87.988 3.1326 36.991 2.6763 3.17e-10 9.23e-09 -270.847 -231.389 
wl/3 89.196 3.1266 38.646 2.6756 6.39e-10 9.66e-09 -270.326 -231.332 
wl/4 89.812 3.1236 39.508 2.6753 8.03e-10 9.88e-09 -270.067 -231.307 
wl/5 90.186 3.1218 40.036 2.6751 9.02e-10 1.00e-08 -269.912 -231.293 
wl/6 90.437 3.1206 40.392 2.6750 9.69e-10 1.01e-08 -269.809 -231.284 
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The first two columns of the table (dx and dy) show grid cell sizes in terms of cells per 
length of the segment and cells per width of the first strip. Zl, pi and Z2, p2 are 
characteristic impedance and slowing of the first and second propagating mode. |Sl 1/111 
and |Sll/22| are absolute values of the reflection coefficients of the first and the second 
modes. ZS12/H and ZS12/22 are angles of the transmission coefficients for both modes 
respectively. As evident from the table, the reflections of the eigenmodes are negligibly 
small regardless of grid size. Figure 2 gives another illustration of the excitation 
mechanism. It shows magnitudes and phases of the currents flowing along line when the 
first mode is excited (plane X=0). Value of current at a grid cell are obtained by integration 
of current density across line in the cell region. Currents are shown as continuous lines 
along line that corresponds to the model representation. Incident normalized wave has unit 
magnitude. Small bumps near the input regions indicate current redistribution that 
presumably occurs due to absence of y-directed currents in excitation regions. It does not 
affect scattering parameters of the segment but it should be accounted in a discontinuity 
analysis problem. A distance between inputs and discontinuity to be analyzed should 
provide enough space to avoid the influence of the current redistribution. 

The next example is open end in the line shown in Fig. 1. Parameters of the problem: 
a=b=1.2mm., wl=s=0.05mm, w2= 0.1mm, hl=0.2mm, epsl=l,h2=2mm, eps2=12.85, 
distance between input one and open end is a/2=0.6mm. Some results of calculations at 
frequency 60 GHz are listed in the table 2 for different grid parameters and show good 
convergence of the method. 

Table 2. 
dx dy |S12| ZS12, deg. time, sec 

a/64 wl 0.007326586 70.41083 1 
wl/2 0.010025581 71.42625 3 
wl/3 0.011042284 71.73771 7 
wl/4 0.011556851 71.88237 13 
wl/5 0.011863031 71.96429 23 
wl/6 0.012064706 72.01653 36 

a/128 wl 0.0074110984 71.49882 4 
wl/2 0.010250116 72.54727 15 
wl/3 0.011349859 72.87912 39 
wl/4 0.011916206 73.03631 81 
wl/5 0.012256258 73.12625 144 
wl/6 0.012481109 73.18381 233 

Here S12 is transmission coefficient from the first to the second mode. The last column of 
the table gives calculation time on computer Pentium Pro 200 MHz with 64 Mb. Reference 
plane is placed in the plane of the open end. To verify calculated data we compare them 
with results of the spectral-domain approach obtained in [10]. Phase of S12 obtained in 
[10] is about 73 deg., that corresponds to our data. Magnitude calculated in [10] is 0.02, 
that is slightly different from our result. Figure 3 illustrates interaction of the two dominant 
modes of-the coupled line on the open end. The first mode is excited and has unit 
normalized magnitude. Current values are obtained through integration in cells regions 
and are given in amperes. 
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Fig 2. Magnitude (top) and angle (bottom) of the current flowing along segment of the 
coupled MSL when the first mode is excited at the input one at frequency 60 GHz. 
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Fig 3. Real parts of the current along line (top) and across line (bottom) in the open end 
of the coupled MSL when the first mode is excited at the plane X=0 at frequency 60 GHz. 
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Conclusion 
The method of simultaneous diagonalisation is proposed in this paper as a general 

approach for extraction of multimode S-matrices of discontinuities in arbitrary shielded 
lines. The main advantage of the method is ideal matching of line eigemnodes in the 
analysis of line segnment that increases accuracy of discontinuity analysis. The procedure 
of analysis of a line cross-section is substituted by more natural analysis of 3D structure 
with extraction of information about eigenwaves indirectly. It develops the idea of "TEM 
equivalent impedance" [2] on the multimode case. The MoSD is illustrated by coupled 
microstrip line segment analysis and open end analysis examples. Processes inside 
structures are explained using current distribution plots. Calculated data are given in the 
tables and can be used for verification. 
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1    Introduction 

The DC power distribution in multi-layered printed circuit boards (PCBs) for high-speed designs 
is typically achieved with a power bus consisting of at least one pair of ground/power planes. 
This DC power-bus configuration is known to contribute to electromagnetic interference (EMI) 
and signal integrity (SI) problems despite its low impedance [1]. A primary concern is the 
phenomenon of the simultaneous switching noise (SSN) [2]. 

With appropriate CAD simulations, the effect of SSN can be investigated at a lower cost 
through various "what-if' scenarios; therefore, a general knowledge can be drawn. The crude 
model of a lumped parallel-plane capacitor works well up to a certain frequency, typically only 
in the hundreds of megahertz [3]. The distributed behavior of the power bus neglected by the 
single-capacitor model can be partially recovered in other models, such as a radial transmission 
line [4, 5]. Widely applied electromagnetic modeling techniques like FDTD and FEM can also 
be used, but there are difficulties accommodating device models in a general fashion. Another 
class of simulation techniques extracts the electromagnetic behavior of a system in terms of a 
collection of equivalent circuit elements [6, 7, 8]. Because of the accessibility of general purpose 
SPICE simulators and the availability of standardized device models including IBIS models, a 
circuit extraction approach is very desirable in power-bus analysis. One well developed circuit 
extraction technique is the partial element equivalent circuit (PEEC) method proposed by Ruehli 
[9], and based on an electric field integral equation (EFIE). This study adopts a general circuit 
extraction technique that employs a conformal mesh [6], and is based on a mixed potential in- 
tegral equation (MPIE) [10]. The circuit extraction / MPIE technique will be denoted simply 
CEMPIE. A general purpose DC power-bus modeling tool has been developed that can accom- 
modate multiple layers with scatterers on intervening layer between power and ground layers 
including via walls and plane segmentations. Surface mount decoupling capacitors are modeled 
with lumped elements that includes the series inductance and resistance of the interconnect to 
the power planes [3]. 

'Portions of this work was completed during the course of Ph. D. study at the University of Missouri-Rolla 
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2    Derivation of CEMPIE formulation 

Assume S is the domain of a metalization surface in the PCB design. In response to an incident 
field Emc(r), there will be an induced current Js on S. The scattered electric field is then 

&{!.) =-juÄ-V4>, (1) 

where the vector and scalar potential are A = /j/sG^(r, f) • Jsds', and <j> = j JscrGf,(r, f")ds', 
with G^ and G% the Green's functions for a general medium corresponding to A and <j>, respec- 
tively. The boundary condition on S requires 

ft x (Einc + Es) = Zsn x/„      reS (2) 

where ft is the surface normal vector and Zs is the surface impedance. Substituting expressions 
for A and 4> into Eqn. 2 yields 

ft x Einc = ft x (jojß f G£{f, f) ■ Ids' + V<j> + ZSJS). (3) 
Js 

The unknown current density can be expanded as 

^« = EJI/>1 (4) 
7 h 

where M is the total number of interior edges, 7 is the running index for edges, ly is the length 
of the 7th edge, i7 is the current value (constant) passing perpendicularly across the edge, and 
/7(r) is the vector basis function introduced by Rao et al. [11]. A set of matrix equations can be 
derived upon substituting Eqn. 4 into Eqn. 3. Employing charge continuity and with arithmetic 
simplifications, the discretized system equations are 

[Q] = [K-'M (5) 
[R + ;ML][i]-[A][0] = [v*] (6) 

-iw[Q] = m + tP], (7) 

where Ra7 = ^ < fa, f7 >, Laj = ^ < }a, JsG*(i>,?) ■ fjds' >, v% = £ < /Ü™ >, and, 
Kmn = iA

l A jTm fTn G*(f, f)ds'ds. The connectivity matrix AMXN is determined by 

II,      if Node n is the starting point of Edge a 
—1,   if Node n is the ending point of Edge a (8) 
0,      otherwise. 

Moreover, the [P] vector represents the external currents injected through the individual cells. 
Figure 1(a) shows a diagram of all current branches crossing the interior edges. The resultant 
Voronoi diagram (cell centers as vertices) in Figure 1(b) shows the circuit nodes in the equivalent 
circuit model. 

Eqns. 5 to 7 can be compared to the canonical nodal-based circuit equations yielding an 
{L,C,R} linear circuit network. The resultant circuit will have N (number of mesh cells) nodes. 
When losses are neglected, i.e., Zs = 0, there is a parallel LC branch between any two nodes, 
say Node m, n. A capacitance also exists between each node and the common datum node [7]. 
A typical circuit element is shown in Figure 2(a) and (b). 
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(a) 

•—*. 

(b) 

.-•—•• 

Figure 1: Discretization of a metal region with (a) Delaunay triangulation and (b) the corre- 
sponding Voronoi diagram. 

arbitrary-shaped metallization 

(a) 

Node m , | j ,   Node n 

(b) 

Figure 2: Two mesh cells and the corresponding equivalent circuit model. 
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Table 1: pc {mm) in a grounded dielectric slab configuration.  Values enclosed by the square 
brackets are computed by the empirical formula. 

d {rail), tr I GHz 5 GHz 10 GHz 
40, 9.6 6.46 [6.27 2.55 2.40 1.53 1.49 
20, 9.6 5.88 [5.97 1.93 2.10 1.27 1.18 
11, 9.6 5.62 [5.61 1.46 1.74 1.00 0.82 
11, 4.7 12.98 [12.87] 2.80 3.38 1.60 1.13 
11, 2.55 unclear [22.32] 6.70 6.70 3.00 3.00 

3    Mesh constraint due to quasi-static approximation 

A general rule of thumb in the EFIE/MPIE is that the mesh dimension should be at least as 
small as 0.1AC = 0.1./e^7co//c [6], where ee// is the effective dielectric constant. However, a 
quasi-static approximation is employed here [6, 7, 8], in order to achieve frequency-independent 
elements in the extracted equivalent circuit. The approximation impacts the mesh density, and 
the typical 0.1AC guideline must be re-addressed in the context of the quasi-static approximation. 

In the quasi-static approximation, the frequency-dependent Green's functions are replaced 
by their static counterparts, which allows the extracted inductances and capacitances to be 
frequency independent. Hence, the same circuit model can be implemented easily in simulations 
of both time and frequency domains. However, as a trade-off, the mesh dimension in CEMPIE 
needs to be fine enough to capture the high-frequency behavior of the system. 

The spatial scalar Green's function is a function of the relative lateral distance between the 
source and field points, i.e., G*>0(fs, rf) = Gl/'{p; zs,zf) where p = ^J{xs - xf)2 + {ys - y})

2. It 
is known that there exists a critical value pc such that G* ~ p"1 when p < pc while G* ~ p'1?2 

when p > Pc [12]. In other words, the approximation of G* by GQ (GQ is always behaving p~l) 
becomes very poor when p > pc. 

A two-plane PCB power-bus can be modeled by a power plane over a grounded dielectric 
slab (or microstrip) with thickness d and dielectric constant er. pc values are studied for five 
combinations of {d, er} at three frequencies (1, 5 and 10 GHz), and tabulated in Table 1. Using 
a trial-and-error approach, an empirical formula for pc is developed based on the tabulated data 
as 

_ «f-1.92^-6.58     32.8 - 0.586er - 7.28^ 
Pc~ 77 Td ' (} 

where / is in GHz and d is in mil. The pc's evaluated with the empirical formula are also listed 
in Table 1. The relative error of pc computed through the empirical formula is less than 20 % 
for 1 < er < 12, 10 < d < 40, and 0.5 < f < 10, and only applies to this range presently, since 
beyond pc could be negative. A more general relationship is being pursued. 

The mesh "dimension can be quantified by the average edge length le = ^"M °'°, assum- 
ing the mesh cells are relatively homogeneous. A "good" quasi-static approximation should 
assure adequate approximation in the dominant matrix elements of the [K] matrix, Kmm = 
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Figure 3: Meshes for (a) Power-bus and (b) Power-island geometries. 

Table 2: Mesh statistics for both Power-bus and Power-island. 

Geometry No. of cells Internal edges edge statistics le (mm) 
Power-bus 386 559 77.5 % 3.84 ~ 5.41 mm 4.081 
Power-island 416 564 78.4 % 3.06 ~ 4.75 mm 3.686 

cA*   -fc JT IT G*{f,?)dsfds. It is then necessary to guarantee the quasi-static approximation to 
be good for any choice of source/field locations within each cell. An "average" cell has the 
dimension of le, thus, it is necessary that le < pc which leads to an overall CEMPIE meshing 
criterion 

Fe<min{pc, 0.1 AJ. (10) 

4    Applications of CEMPIE in PCB power-bus analysis 

Two types of boards are considered to demonstrate the application of the CEMPIE approach: 
(1) a thin board with d = 10 mil and er = 2.99 and (2) a thick board with d = 43 mil and 
er = 4.7. The ground plane is free of discontinuities, whose area is intentionally created larger 
than that of the power plane. The ground plane is treated as if it has infinite extent in the xy- 
plane; hence, the Green's functions can be computed with a perfect electric conducting plane of 
infinite extent. Only the power planes then need to be meshed. Two power plane geometries are 
used for structures without or with discontinuities: (1) a 50 mm x 50 mm power bus or Power- 
bus in short, and (2) a power bus with gaps resembling an island or Power-island in short. To be 
efficient, Power-buses or Power-islands with different material properties share a common mesh. 
The meshes for the Power-bus and Power-island structures are shown in Figure 3(a) and (b), 
respectively. The mesh characteristics are displayed in Table 2. Assuming the upper frequency 
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Figure 4: Indexed locations in both Power-bus and Power-island geometries. 

under consideration is fc = 5 GHz, then 0.1AC is 6 mm, and by Eqn. 9 the critical edge lengths 
are 5.387 mm and 5.505 mm for the thin and thick board materials, respectively. Thus, the 
necessary meshing condition in Eqn. 9 is not violated, and the two meshes are likely to provide 
reliable circuit models. 

Since both meshes can be covered by a 50 mm x 50 mm area, a common map is displayed in 
Figure 4 with indexed locations. The extracted models are used to simulate frequency-domain 
521 results with corroborating measurements. When the two ports are selected at Locs. 1, 3 
referring to Figure 4, both simulated and measured data are presented in Figure 5. When the 
two ports are selected at Locs. 1, 2, both simulated and measured data are presented in Figure 6. 
In general, the agreement is good to approximately 3 — 4 GHz. Discrepancies are in part due to 
measurement artifacts, and variations in the dielectric constant with increasing frequency and 
skin effect, both of which have been neglected. 

5    Discussions 

The CEMPIE technique presented here is able to predict the distributed behavior, corroborated 
by measurements, of a PCB power-bus structure in terms of a LC linear circuit network. It is 
particularly useful when other devices of concern are also represented by circuit models such as 
IBIS models. Novel power-plane design such as a power island can be evaluated with simulations. 
The CEMPIE formulation requires explicit matrix inversions, which is currently implemented 
with a LU type direct matrix solver. In the future, iterative methods will be explored for 
matrix computations to improve efficiency. In addition, a circuit reduction technique is being 
investigated to minimize the number of necessary circuit nodes. 
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Figure 5: Comparison of simulations and measurement for the Power-bus structures. 
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Figure 6: Comparison of simulations and measurement for the Power-island structures. 
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Modeling of Conductor and Dielectric Losses in Packages 

J. Poltz 
OptEM Engineering Inc. 

1. Introduction 

Interconnects must be included in today's high-frequency circuit simulations. At GHz frequencies skin 
effect causes reduction of the interconnect inductance and a rapid increase of the interconnect resistance 
and leakage conductance [1,3]. Attempts to reduce the propagation delay by lowering the interconnect 
capacitance (decreasing cross-sectional dimensions) result in an increase in wire resistance which, in 
turn, increases the rise time and indirectly slows down the response. Therefore, it is impossible to 
optimize packaging interconnections to maximize the clock rate without analyzing losses (solving 
Helmholtz equation) and implementing lossy transmission line models. 

2. Calculation of inductance and resistance 

There is only a range of frequencies where the Helmholtz solution is required [2, 7]. For low 
frequencies, the dc approximation of current distribution (uniform throughout a conductor cross- 
section) is accurate enough. For very high frequencies the surface currents screen the interior of the 
conductors. Both low (DC) and high-frequencies (HF) can be handled well by the Laplace equation - 
which is used by static field solvers. The transition between DC and HF range can be described as the 
quasi-stationary region. It is this quasi-stationary region that requires the Helmholtz solution. To 
estimate the frequency range of the quasi-stationary region one has to calculate the skin depth which is 
defined as: 

8 = 1/ÄT (1) 

where: f - frequency, n0- permeability of the free space, 7 - conductivity. Strong frequency 
dependence of the resistance and inductance is expected for frequencies which put the skin depth in the 
range of conductor cross-sectional dimensions because of a non-uniform current distribution. 

Table 1. Skin depth for aluminum conductors as a function of frequency. 

f[MHz] 

skin depth [\m\~\ 

10 MHz 

25.76 

100 MHz 

8.147 

1GHz 

2.576 

10 GHz 

0.815 

The Helmholtz equation has to be solved within the conductor region. Equivalent representation of 
Helmholtz equation is known in the form of Fredholm integral equation of the second kind, which in the 
three-dimensional space is written as [2, 4]: 

1 
J(M) = - 

WY 
Jl(P)ln- -dSP - jcoyA(M) 

2% rv"""r(M,P) 

where: A(M) - represents external (source) field. P and M represent points in the cross-section. 

(2) 

680 



The inductance and resistance matrices are calculated together as the imaginary and real parts of the 
impedance matrix. They are both related to the distribution of currents. 

The current distribution is calculated from (2) using a combination of Finite Element Method (FEM) 
and Boundary Element Method (BEM). OptEM software splits bulky conductors in finite elements 
(bulky conductors) or multilayer boundaries (ground and power planes) as shown in Figure 1. This 
technique requires combining the finite element method with the boundary element method. Although 
difficult at the programming stage this method is the most efficient technique of solving the Helmholtz 
equation for practical interconnect applications. 

Boundary elements 

Free space 

Finite elements 

Multilayer boundaries 

Figure 1      OptEM software calculates L, R values using a 
combination of BEM and FEM. 

it ' 
8§ 

Figure 2 Current density distribution 

Numerical solution of the integral 
equation (2) requires selection of an 
approximation technique and a generation 
of linear constrains in the form of 
algebraic equations. It was found out 
that current distribution within bulky 
conductors can be well represented by 
quadratic elements whereas currents in 
thin and wide planes (like ground and 
power layers) are represented by cubic 
splines based on boundary layers. This 
combination of finite and boundary 
elements offers numerical stability and 
accuracy. 

A combination of different approximation 
techniques requires an adequate 
procedure for building linear algebraic 
equations. After analyzing different 
methods (including simple collocation) 
the Galerkin method was selected as the 
only one offering correlation between the 
approximation accuracy and the 
numerical effort in setting up and solving 
algebraic equations. 

Before calculating inductance and 
resistance matrices a complex, frequency 
dependent current distribution is 
calculated for a set of independent source 
currents. The inductance and resistance 
matrices are calculated together as the 
imaginary and-real parts of the impedance 
matrix. They are both related to the 
distribution    of   currents    and    both 
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frequency dependent.   For five conductors shown in Figure 2, the current in each conductor is 
calculated from the current density as: 

li = Jj(M)dSM (3) 
Si 

The current calculation has to be repeated for five independent voltage conditions, [VJ = jC0y[A], in 
order to assemble entire impedance matrix. In matrix notation: 

[R + jmL][l] = [v| (4) 

In practice matrix [V] is selected as the diagonal unit matrix, therefore the unit inductance and 
resistance matrices can be calculated by separating the real and imaginary parts of the inverse current 
matrix: 

[R] + jffl[L] = Dfl" (5) 

W&iimiS&ä&mx 
ÖEaäsüT-*»—of^iw 

Both the inductance and resistance matrices are frequency dependent, as they are based on the realistic 
(frequency dependent) current distribution. By solving the Helmholtz equation, OptEM software 
automatically includes eddy-current and proximity effects when calculating current distribution. 

Since magnetic field distribution outside 
conductors is almost the same for any 
frequency of the current, the difference in 
inductance values is caused by the 
gradual elimination of the magnetic field 
from the conductor interior. The 
magnetic field inside the conductor 
disappears, as the current distribution is 
pushed towards the conductor surface at 
higher frequencies. The loss of the 
magnetic field inside the conductor 
results in a gradual reduction of 
inductance in the quasi-stationary region 
of frequencies. Finally, at the high 
frequency range the magnetic field exists 
only outside of the conductor (Figure 3). 

Figure 3      OptEM Package can accept GDSII layout and 
fabrication information and analyze conformal layers 
(deposition process) to produce frequency dependent 
parameters' and models. 

3. Calculating capacitance and 
conductance 

Independent from  the  inductance  and 
resistance   matrices,   OptEM   Package 
calculates capacitance and conductance 

matrices that are related to the distribution of the electric field.   Conductance matrices have non-zero 
entries only if materials included in the cross section have designated non-zero loss tangent. 
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Conductance matrices calculated for typical packaging materials demonstrate a strong frequency 
dependent characteristic. 

Capacitance and conductance are calculated from the distribution of the transverse electric field. The 
cross-sectional dimensions of the system are much smaller than the wavelength, therefore it is safe to 
assume that the transverse electric field is induced only by the charge distribution and is decoupled from 
the magnetic field. This justifies using a scalar potential Vas the representation for the transverse 
electric field. Scalar potential is defined as: 

E = -gradV (6) 

Dielectric media used in packaging are frequently lossy. Therefore, the total transverse current through 
the dielectric has two components known as the conductive current and the displacement current: 

-     -    3D 
Jt=j+ir (7) 

Using the earlier introduced phasor notation 

Jt=J + j(OD (8) 

Substituting material constrains into (8), one can link the electric field with the total current as: 

Jt=yE + j(öeE = (Y+ jcoe)E = jooeE (9) 

where: 
j(öe = y+jcoe (10) 

Dividing (10) by j(ö, converts the complex dielectric constant, into permittivity (the real part) and 
conductivity scaled by frequency (the imaginary part): 

6 = 8 + y/j(0 (11) 

Using the loss tangent notation, the complex dielectric constant can be described as: 

g = (l-jtan8)e, 

where: 
Y 

tan8 = — (12) 
coe 

Both the conductive and the displacement currents are coupled together through the following 
requirement for the total current: 
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divJt = 0 (13) 

The source-free behavior of the total current results from the lack of a net space charge in typical 
interconnect applications. Substituting (6) and (9) into (13) we get the following partial differential 
equation: 

div(jciEgradV) = 0, (14) 

which is equivalent to: 

div(egradV) = 0 (15) 

Equation (15) is solved in uniform subregions where: 

e = const   and  divgradV = AV = 0 (16) 

As earlier for the current distribution, the charge distribution on dielectric interface and conductor 
surface can be calculated from the Fredholm integral equation. In two-dimensional space (cross-section 
of the transmission system): 

»M-Äjffi^^dlp + C ("> 
Additional constraints are applied to the interface. Finally a condition for the total charge is used to 
calculate the constant C: 

Jocdl = 0 (18) 

where: 

G - charge density, 

/ - conductor (and dielectric interface) boundaries. 

For the individual conductors the charge on the surface is calculated as: 

Q. =  Jg; dl (19) 
condj 

We must repeat the charge calculations for different voltage boundary conditions [VJ. Q and V are 
complex for lossy dielectrics, and when in a matrix notation: 

Q = [V] - (20) 
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Matrix [Vj can be selected as the diagonal unit matrix and therefore the unit capacitance and 

conductance matrices can be calculated separating the real and imaginary parts of the complex charge 
matrix as: 

[C]-^[G] = |Q (21) 

Free space 

Boundary elements 

JL 
Conductor / Dielectric 

Ground 

Figure 4      Boundary Element Method is used to calculate C,G 
matrices 

1.0 

A complex charge distribution in the form 
of cubic splines is used to represent 
sources of the electric field for lossy 
dielectrics. The C and G values are 
calculated from charge distributed on the 
surface of the conductors as shown in 
Figure 4. 

Any dielectric material becomes a lossy 
dielectric at a sufficiently high frequency. 
The phase of the polarization vector lags 
behind that of the applied field causing a 
hysteresis loss. 
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4. Circuit simulation and comparison 
with measured results 

Using OptEM Package software one can 
assemble a model of a complex 3d 
interconnect. Segments of wires which 

|S211 I     |    '|    '| '  I   111   ffV\\J.    I     I      I are not included in the uniform 
transmissions lines are automatically 
interpolated between uniform sections or 
extrapolated to connection points. 
Separately, three dimensional non- 
uniformities like pins, vias and bonding 
wires are modeled using a three 
dimensional solver. 

Electrically short transmission lines, like 
most package applications, can be 

Figure 5. Comparison of measured and simulated modeled accurately with lumped circuits. 
To minimize the number of components 
the program combines segments by 
integrating their unit parameters along the 
wire path. However, the length of a 

ladder section is always carefully calculated to prevent a filtering effect of higher frequencies which may 
be included in the spectrum of the analyzed signals. Substantial simulation and experimental verification 
of OptEM software was reported by other authors [5,6]. Figure 5 presents a comparison of measured 

40 MHz frequency 5 GHz 

Comparison of measured and simulated 
attenuation results for selected trace on an Pin 
Grid Array package. 
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and simulated attenuation results for a selected trace on a Pin Grid Array package. The trace was 
modeled initially as a lossless transmission line. A good correlation between experimental and 
simulation results was reached only after conductor and dielectric losses were included in the model. 

5. Conclusions 

• For realistic simulation of high performance systems, one has to consider adding interconnect 
models to the already designed circuit. 

• Since package interconnects have cross sectional dimensions within the skin depth range, an 
accurate solution of Heimholte equation is required. Helmholtz equation allows for the analysis of 
eddy-currents, and proximity and skin effects for quasi-TEM propagation. 

• Conductor and dielectric losses can be efficiently calculated together with inductance and 
capacitance matrices and included in an optimized package model. 

• Inclusion of losses in modeling package interconnect allows very good prediction of experimental 
results for a wide frequency range. 
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Abstract 

This paper presents numerical methods for extracting the effective lumped-inductance and 
capacitance of a 3D power-distribution structure. The extraction techniques rely on manipulations 
of Maxwell's equations and the application of these relations to time domain field data. Data is 
obtained using the finite-difference time-domain method. Validations of the techniques presented 
here are provided against simple 3D structures, and are shown to be versatile in the analysis of a 
complex meshed power-distribution structure. 

I. INTRODUCTION 

DETERMINING the equivalent-circuit lumped inductance and capacitance of a 3D power- 
distribution structure is of critical importance to successful package- and system-level 

design. Physical and electrical design trade-offs can be understood and optimal performance 
can be achieved if these parameters are known before commitment to hardware. Several 
different methods have been employed to calculate both the effective inductance and ca- 
pacitance of signal pathways [1] [2]. By design intent, low-inductance power-distribution 
structures are highly interdigitated structures with globally distributed power and return 
pathways. The finite inductance of these 3D structures is the result of an inherently com- 
plex interaction of 3D electromagnetic field distributions. On the other hand, the geometries 
of these structures are also designed to maximize system capacitance, this being a desirable 
attribute of a stable power-distribution structure. 

Commonly, techniques that place computational simplicity as a high priority make sim- 
plifying assumptions to the solutions of Maxwell's equations. Furthermore, these techniques 
require either the code or the user to specify the direction(s) and distribution of the return 
path current(s). Each technique, including those presented in this paper, features inherent 
advantages and tradeoffs. In the work presented here, a priority was given to 3D model- 
ing accuracy. The techniques explored in this paper employ simple-methods that use the 
characteristic definitions of inductance and capacitance, as derived directly from Maxwell's 
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equations. These techniques quantitatively determine the natural responses directly from 
the field data. The user controls the tradeoff between accuracy and computational-resource 
usage. 

II. METHOD DEVELOPMENT 

The effective lumped capacitance and inductance of a complex 3D structure can be cal- 
culated from the measured voltage and current responses of the system. Both of these re- 
sponses can be extracted directly from the finite-difference time-domain(FDTD) field data. 
The FDTD field data is obtained by modeling the physical structure and applying Maxwell's 
equations[3]. The calculations presented below do not depend on the physical composition 
of the structure , but rather on the approximation-free data provided by the FDTD solver. 
This field data is then used to calculate the capacitance and inductance of an arbitrary 3D 
structure. 

A.  Capacitance 

In this section, the method for determining capacitance will be derived. A Gaussian- 
shaped voltage pulse provides the input signal to the structure. This excitement sets up 
electric fields between the conductors and ground planes of the system. The capacitance 
between a particular conductive element and the ground plane is seen to be the ratio of the 
leakage current to the time derivative of the voltage, where the leakage current is defined as 
the current passing between the conductor and the ground plane[l]. 

c = i (1) 
st 

Equation 1 is a direct result of the manipulation of Maxwell's Equations, where the result- 
ing capacitance is time independent. The voltage stimulus used in this method must be time 
varying. The requirement that the system be composed of time independent capacitances 
yields data for which the leakage current and time-derivative voltage plots are identical in 
shape. 

Intrinsic to a good capacitive structure is that it allows for as little leakage current as 
possible. For this and other reasons, primarily errors resulting from fringe effects and limi- 
tations of the FDTD interface, it is useful to derive an alternative representation of equation 
1. Multiplying both sides of equation 1 by i5V and integrating yields a relationship for which 
the product of the capacitance and voltage are equal to the time integral of the current. 
Dividing both sides by the voltage yields: 

C=f (2) 
This derivation takes advantage of the relationship between current and charge. It provides 

an equation for which the elements are easily arrived at within the confines of the FDTD 
solver[4]. Another benefit of equation 2 is that, as will be discussed in the validation section, 
it can easily -be used to account for the fringe effects of a capacitive structure. 
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B. Inductance 

In this section, a method for extracting inductance from field data will be described. A 
Gaussian-shaped current pulse provides the stimulus which propagates through the structure. 
Shorting the current path at the end of the structure simulates the operation of a PCB load 
that is drawing current; for example, a CMOS integrated circuit experiencing a current 
spike. In this state, the conduction current causes flux to develop throughout the structure, 
thereby emphasizing the characteristic inductance of the structure. A voltage develops across 
the inputs of the system in response to the dynamic current flowing through the effective 
inductor. This voltage response to the dynamic current stimulus is directly indicitive of the 
structure's inductive component, as expressed in equation 3 [1]: 

V 
L = JT (3) 

st 

Equation 3 is a simple manipulation of the characteristic equation describing the voltage 
(V) developed across an inductance (L) due to a |£ stimulus. As in equation 1, equation 
3 was arrived via manipulation of Maxwell's Equations and is conditional upon a time 
independent inductance. The presence of an inductive element can be inferred from the 
shape of the voltage response by observing the similarity to the shape of the corresponding 
Ü stimulus. 

C. Discussion 

The application of Maxwell's equations by the FDTD solver fully accounts for the struc- 
ture's electrical behavior. Manipulation of the data describes the physical structure's inher- 
ent response to the given electrical stimulus. Similar to the use of the transfer function in 
linear systems, the FDTD resultant data effectively frees the subsequent capacitance and 
inductance calculations from any internal geometrical considerations . In other words, this 
approach can be used successfully to calculate the L and C parameters of an arbitrarily- 
shaped 3D structure. In addition, the FDTD core solver frees the calculation methods from 
any potentially limiting TEM approximations, thus providing an inherently accurate 3D 
environment for the required simulation and parameter extraction. 

III. VALIDATION 

This section provides validation of the capacitance and inductance extraction methods. 
Relatively simple 3D structures are modeled and simulated using FDTD, and the results are 
compared to analytical solutions. 

A. Capacitance 

A parallel plate capacitor structure was modeled with the intent of comparing capacitance 
values extracted from simulation data to capacitance value calculated from the following 
analytical equation[l]: 

C=€4 - (4) 
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.where e is the permittivity , A is the plate area, and d is the distance between the plates. 
The dynamic voltage source used to stimulate the parallel plate model is located between 
two tabs attached at the edges of the plates. Average voltage between the plates is extracted 
from the FDTD data. The charge that accumulates on the top plate is also extracted. The 
effective lumped capacitance of the structure is then calculated from the ratio of the charge 
on the top plate to the voltage between the two plates, as dictated by equation 2. Table 
1 below contains data, both analytical and simulated, for several different parallel plate 
models. 

TABLE I 
PARALLEL PLATE CAPACITOR RESULTS 

dim «r C theor c ■ ^ sim difference 
60x60^m 2.55 40.64fF 43.0fF 5.5% 
40x40/um 2.55 18.06fF 19.6fF 7.8% 
20x20yum 2.55 4.516fF 5.1fF 18% 
60x60yum 100 1.60pF 1.64pF 2.4% 
40x40^m 100 0.708pF 0.73fF 3.0% 
20x20yum 100 0.177pF 0.19pF 6.8% 

An interesting trend is the indirect relationship between plate area and the percent dif- 
ference in analytical and simulated capacitances. Decreasing the plate area causes the effect 
of fringing fields on the capacitance value to become more pronounced. These naturally 
occuring effects are not accounted for in the analytical capacitance equation, due to the 
difficulty in characterizing the exact nature of the fringing fields from structure to structure. 
There are analytical methods that approximate the fringing effect, however they are not 
exact. The application of equation 2 in the FDTD simulation includes the contributions 
made by all the fields linking the plates by accounting for the total charge on the top plate. 
Therefore, it is reasonable to assume that capacitance values extracted from simulation data 
will be slightly higher than analytical values. Table 1 illustrates this general trend toward 
larger differences between the analytical capacitance and simulated capacitance as fringing 
becomes more significant. The extent of the fringing fields is also dependent on the value of 
the dielectric between the plates. A dielectric with higher permittivity will confine the fields 
between the plates, where they are accounted for by the area parameter in the analytical 
equation (eq. 4). As the permittivity of the dielectric decreases, the fringing fields tend 
to increase the effective area of the plates, thus increasing the capacitance. This trend is 
visible in the data presented in table 2, with the percent difference between the simulated 
and analytical results generally increasing as the relative permittivity decreases. 

B. Inductance 

The model that we analyzed in order to validate the inductance extraction method was a 
coaxial cable, which provided us with a closed-form theoretical solution for comparison. The 
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TABLE II 
PARALLEL PLATE CAPACITOR: FRINGE FIELD TREND 

dim U C theor ^ sim difference 
20x20/an 100 177fF 190fF 6.8% 
20x20jtm 50 88.6fF 93.4fF 5.2% 
20x2Gym 10 17.7fF 19fF 6.8% 
20x2GVm 5 8.85fF 9.7fF 8.8% 
20x20/um 2.55 4.52fF 5.1fF 18.0% 
20x20^m 1 1.77fF 2.2fF 19.5% 

theoretical equation for the inductance of a coaxial cable is given by [5]: 

L'(H/m) = ±*lnb- (5) 

where ß is the dielectric permeability, b is the radius of the outer conductor, and a is the 
radius of the inner conductor. For the simulations, ßr was set to one, indicating an air 
dielectric. The coax was stimulated with a Gaussian current pulse, and the characteristic 
voltage response due to the inductive element of the line was extracted. Application of the 
inductance-calculation method to this FDTD field data yielded the results seen in table 3. 

TABLE III 
INDUCTANCE CALCULATIONS FOR A COAXIAL CABLE 

a b L theor T ' 
■^ sim 

2.5 mm 12.5 mm 0.32/iH/m 0.33AiH/m 
3.5 mm 12.5 mm 0.25^H/m 0.26/zH/m 
4.5 mm 12.5 mm 0.20/iH/m 0.20/iH/m 

The numerically modeled values of inductance per unit length closely match the corre- 
sponding theoretical values. Differences can be attributed to rounding errors or insuffucient 
resolution in the FDTD model. 

IV. APPLICATION: MESHED PCB MODEL 

A. Discription 

A significant problem in modeling and designing high speed digital applications has been 
understanding how to extract system-level parameters from complex power-distribution 
structures. One such model is shown in figure 1. 

This structure is a meshed PCB system of three power planes with current sources at 
the edges, five ground planes, and nine interdigitated vias connecting the power and ground 
planes. The model is based on a portion of an actual PCB power-distribution structure un- 
derneath a 2499-pin, 30 mm MCM [6] with a pad pitch of 500/um, built with copper/polyimide 
technology similar to the memory-element MCM published in [7], The modeled portion of 
the PCB covers a planar area of 3000/wn by 3000^im and a via height of 1020 /mi. When 
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Fig. 1.   Power-Distribution Structure with meshed power/ground planes 
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the planes are meshed due to the signal-pin antipads, approximately 50% of the metal is 
removed. 

B. Inductance extraction 

The meshed planes force the current to diverge around the antipad holes, and subsequently 
flux develops through the holes, increasing the total inductance of the system. It is this 
increased inductance that is of interest and can be determined from extracted field data. 
The characteristic voltage response is measured between a power plane and a ground plane. 
A via short to a ground plane on top of the structure provides a measurement of the dynamic 
stimulus current that causes a voltage to develop across the structure, essentially simulating 
a CMOS load. Until now, the inductance calculation for this type of structure has been 
done on a piecewise scale by examining the effects of the power/ground planes on the vias 
and vice versa. However, by applying our method based strictly on the structure's stimulus 
and response, it is possible to represent the entire structure as a lumped inductor with one 
straightforward calculation. The effective lumped-inductance of the meshed pcb structure 
was calculated to be approximately 87.5 pH. 

The composite physical PCB implementation under the MCM repeats this 3mm by 3mm 
subsection 8 times in both x and y. Therefore, the composite inductance of the power 
distribution through the meshed pcb and clustered via arrays feeding the 2499-pin MCM 
would be approximately lOpH. 

A way to qualitatively validate this solution is to quantitatively compare the meshed PCB 
model to a PCB structure without meshed planes. As was mentioned before, the meshed 
planes increase the system inductance. Without the meshed holes present in the planes, one 
would expect the inductance to decrease along with the flux. After~running a simulation 
and extracting the required current and voltage data, the inductance of a solid-plane power- 
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distribution model was calculated to be approximately 79.2 pH. A comparison between the 
two modeled inductance results, for the meshed-plane model and unmeshed-plane model, is 
presented in figure 2. Using unmeshed-planes drops the overall structure inductance 9.5% 
from 87.5pH to 79.2pH. 

Fig. 2.   Meshed vs. Unmeshed Structure Inductances 
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C.  Capacitance extraction 

In contrast to the inductance, the capacitance between two planes of the structure shown in 
figure 1 has a relatively straight-forward analytical calculation. Accounting for the decreased 
planar area due to the meshing, this capacitance can be calculated using equation 4. As an 
excercise to test the validity of this method, and as a possible step towards the full electrical 
characterization of this structure (R,L,C,G), the capacitance-extraction method was applied 
to a sub-system of meshed layers. The sub-system of the structure shown in figure 1 consisted 
of two ground planes enclosing a single power plane, with the ground planes connected by 
vias and the power plane stimulated at the edges by Gaussian current sources. The analytical 
capacitance of the structure was calculated to be approximately 6pF. This value is close to 
the 5.6pF capacitance value extracted from an FDTD simulation of the same model. The 
results confirm the versatility of this capacitance extraction method for structures more 
complex than the parallel plate capacitor model examined in the validation section. 

V. CONCLUSION 

This paper has investigated a straightforward method for calculating the equivalent lumped 
inductance of a 3D power-distribution structure based on the ratio of the characteristic volt- 
age response to a dynamic current stimulus. The subsequent dual approach for calculating 
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lumped-capacitance based on the ratio of characteristic current response to a dynamic volt- 
age stimulus was also described. Validations of these extraction techniques were provided 
against theoretical solutions for two simple 3D structures: a parallel plate capacitor and a 
coaxial cable. The capacitance and inductance of a realistic power- distribution structure 
were also calculated from FDTD simulation field data. It is clear that this approach can be 
useful in determining the optimal physical parameters of a power-distribution system while 
staying within electrically-dictated inductance thresholds that often accompany high-speed 
digital applications. In addition, the effective capacitance of relatively complex structures, 
such as meshed parallel planes, can be determined and factored into geometrical consid- 
erations. These dual methods can be integral in the development of design guidelines for 
power-distribution structures similar to figure 1. Future work involving the electrical char- 
acterization of an entire 3D power-distribution structure in terms of L,C,G, and R, based on 
values computed using the methods developed herein, is currently being explored. 

References 

[1] N.N. Rao, "Elements of Engineering Electromagnetics", third edition, Prentice Hall, 
1991. 

[2] R. Gravrok, M. Piket-May, and K. Thomas, "LC: An Integrated Methodology to Model 
and Visualize Complex Electrodynamics of 3D Structures", http://www.cray.com/lc/epep. 

[3] A. Taflove, "Computational Electromagnetics: The Finite-Difference Time-Domain 
Method", Artech House, 1995, chapters 1-5. 

[4] A.Taflove, "Computational Electromagnetics: The Finite-Difference Time-Domain Method" 
Artech House, 1995, chapters 13 - 15. 

[5] L.C. Shen and J.A. Kong, "Applied Electromagnetism", third edition, PWS Publishing 
Co., 1995, pg. 482. 

[6] RGravrok, D. Scheid, J. Ficke, K. VanGoor, V.Rao, "Advanced MCM-Ds Break the 
I/O Bottleneck with Embedded Area-Array Integrated Circuits", ISHM MCM Conference, 
Denver, Colorado, April 17, 1996. 

[7] J. Ficke, K. Hokanson, C.Berry, and R.Gravrok, "High-Bandwidth, Low-Latency 3D 
Memory Module", IMAPS International Journal of Microcircuits and Electronic Packaging, 
volume 19, number 4, pgs. 369-374, 4th quarter, 1996. 

694 



Extraction of Equivalent Circuit Parameters of Inter- 

connections Using FDTD and PML 

Feng Liu and Jose E. Schutt-Aine 

Department of Electrical and Computer Engineering 
University of Dlinois 

Urbana,IL 61801 

Abstract 

In this paper, the finite-difference time-domain (FDTD) method is used to extract the 
equivalent circuit parameters of multi-conductor interconnects.  The perfectly matched layer 
(PML) is applied to build absorbing boundary conditions (ABCs). Results are included. 

1. Introduction 

As the speed of high performance VLSI circuits increases, the full-wave nature of the intercon- 

nections becomes important. The wave aspects like signal distortion and unwanted signal coupling 

between different interconnects must be considered. One of the consequences of this is that accu- 

rate electrical modeling of these structures is necessary to insure the simulation in the design stage. 

This requirement can be fulfilled by a full-wave approach, which includes these effects by solving 

Maxwell's equations. 

Among the available full-wave techniques, the finite-difference time-domain (FDTD) method is 

the most attractive method. The main advantage of the FDTD technique is its ability to model com- 

plicated structures. Recently, some work was performed on the extraction of equivalent circuit pa- 

rameters of multi-conductors using FDTD [1-3]. But the advantages of the method were not fully 

exploited due to ineffective truncation of the simulation area. The recently introduced "Perfectly 

Matched Layer" (PML) method in theory provides unmatched performance in yielding reflection- 

less mesh truncation for FDTD simulation. 

In this paper, the FDTD implementation of the modified Maxwell's equations with the PML is 

first reviewed. Then, the circuit model of multi-conductor interconnects is discussed and an ex- 

traction algorithm of equivalent circuit parameters is given. The reliability of the method is verified 

by comparison with other methods. 
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2. PML-FDTD Formulation 

The finite-difference time domain (FDTD) method is a versatile technique for the full-wave 

simulation of electromagnetic phenomena governed by Maxwell's equations. Since its introduction 

by Yee [4], the FDTD method has been applied to many problems. The main challenge for FDTD 

is in the implementation of the absorbing boundary conditions (ABCs) at the edges of the FDTD 

grid. Another concern is the size of the computational domain (or the memory requirement for the 

simulation) for unbounded EM problems, which is determined by the type of mesh truncation. 

The recently introduced "Perfectly Matched Layer" (PML) [5] in theory provides reflectionless 

absorption of EM waves independently of frequency or angle of incidence. In addition, the PML 

provides unmatched performance in the ability to provide reflectionless mesh truncation for FDTD 

simulation. The ability to absorb outgoing waves is provided by additional degrees of freedom in- 

troduced by a split field formulation with anisotropic electric and magnetic conductivities. 

The PML is an artificial lossy medium, which is characterized by electrical conductivity a and 

magnetic conductivity a*. They are related to each other as follows: 

o _a* 
£_7 CD 

This relationship ensures that the wave impedance of the PML medium is matched to that of the 

adjacent physical medium. The modified Maxwell's equations are [6]: 

/'^f+^A = -TJt><E 
at ox 

<3H„      *„ o Ä   _., 
dt        l   sz       dz (2) 

and 
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«Ecr _,        o „   __ 
e—r0- + <* JE„ = —* x H 

£-# + ^=ÄZ_><H (3) 

where E = EM + E^, + EK and H = H„ + H^ + HK. Note that E„-, and Ksi, i = x,y,z are two- 

component vectors. The above equations contain twelve scalar equations with twelve split field un- 

knowns. Let Hsx = yHsxy + zHsxz, E = xEx + yEy + zEz, and substitute them into (2). By equat- 

ing the z component, we have 

fl—ja. + aH„=-—Ey 
a ax (4) 

Applying the same procedure, we can obtain 12 equations. The FDTD implementation of these 

equations on a Yee grid is straightforward. 

The wave propagation phenomenon in the perfecdy matched medium is very similar to that de- 

scribed by Maxwell's equations with the exception that attenuation may be controlled through o";, 

i = x,y,z- The degrees of freedom supplied by the anisotropic medium allows one to control the 

attenuation of individual component of the fields. The absorbing boundaries at the edges of the 

simulation region can be created by choosing appropriate values of ah i = x,y,z. In practice, 

abrupt changes in conductivity from free-space to the PML medium cause large reflections at air- 

PML interface due to the errors introduced by the numerical discretization. Thus, the smooth con- 

ductivity profiles that increases from 0 at the air-PML interface to <Tmax at the PEC termination (the 

fields are nearly zero at the end of the PML) are assigned. 

3. Circuit Model 

Consider a general multiconductor transmission line structure with N conductors. For a quasi- 

TEM mode of propagation, this structure can be considered as a guided-wave system and can be 

described by the distributed circuit parameters of the transmission lines. The voltage and current 

on the transmission lines satisfy the generalized frequent dependent Telegrapher's equation [7]: 
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-—V(Z, CO) = jaJL(a)I(z, co) 
dz. (5) 

-—I(z, coj = ;coCf co )\(z, co) 
dz 

where I(z, co) and V(z, co) are current and voltage vectors. L(co) and C(co) are inductance and ca- 

pacitance matrices respectively. We have neglected the dissipation of the interconnects. The L(co) 

and C(co) matrices can be obtained by 

L(co) = ~(4- Vfc co)I(z, co)"1) 
jw dz 

1   d (6) 

C( co) = -—(-=- l(z, co) Vfc co)-1) 
jw dz 

The current and voltage propagating along each line in the time domain can be calculated from 

the electromagnetic fields which can be obtained from the FDTD by: 

i(z,t) = j E'dl 
,  (7) 

v(z,t) = \E»dl 

where the contour path for v(z,r) extends from the ground plane to the line, while c is the trans- 

verse contour of the line. Then, Y(z,a>) and I(z,ft>) will be calculated from the EFT of v(z,t) and 

i(z,t). 

Here, we summarize our extraction algorithm. First the EM fields are simulated by the FDTD 

algorithm, where the PML is used as ABC, next the fields at sample positions are recorded. The 

currents and the voltages are calculated from the integrations based on the recorded fields. Finally, 

L(co) and C(a>) matrices can be calculated by equation (6). 

4. Numerical Results 

In this section, the method is used to analyze a microstrip structure with symmetric coupled 

lines [8]. The geometrical parameters are shown in Fig. 1. The number of grids is 60 x 27 x 135 

with space Ac = Ay = Az = 5 x 10_5m. The time step is At = 7.5 x 10~l4s, which is restricted by 

the Courant stability condition. Twelve cells of PML are used to build the absorbing boundary in 

each direction. The conductivity values were chosen with a parabolic profiles. 
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First, we validate our FDTD-PML code by exciting the fields with a single frequency source 

(frequency = 18 GHz). N, = 6000 time steps are computed. From Fig. 2, we observe that the re- 

corded field exhibits an excellent match with the source. 

For the extraction, the fields are excited by a Gaussian source: 

jx=    l    e«-<»fir 
AxAyAz (g) 

where the Gaussian half-width is T=100 At and the delay time r0 is set to 500 At. N, = 1500 time 

steps were computed to insure that the Gaussian pulse pass the sample completely. 

The L(ffl) and C(o>) extracted by the method described above are shown in Fig. 3. Our results 

are in good agreement with those in [3]. 

5. Conclusion 

In this paper, the FDTD and PML are used to simulate the electromagnetic fields in the time 

domain. Based on the fields recorded, a standard method for the extraction of the equivalent circuit 

parameters of coupled transmission lines are presented. 

6. References: 

[1] R. Mittra, W. D. Becker, and P. H. Harms," A general purpose Maxwell solver for the extraction of equivalent 
circuits of electric package component for circuit simulation." IEEE Trans. Circuits Syst. I, vol.39, pp. 964-973, 
Nov. 1992. 

[2] T. Dhaene, S. Criel, and D. D. Zutter, " Analysis and modeling of coupled dispersive interconnection lines," 
IEEE Trans. MTT., vol40, pp. 2103-2105, Nov. 1992 

[3] J. Zhao and Z. F. Li," A time-domain full-wave extraction method of frequency-dependent equivalent circuit pa- 
rameters of multiconductor interconnection lines", IEEE Trans. MTT, vol. 45, pp. 23-31, Jan. 1997 

[4] K. S. Yee," Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic 
media", IEEE Trans. Antennas Propagat, vol. 14, pp. 302-307, May 1966 

[5] J. P. Berenger," A perfectly matched layer for the absorption of electromagnetic waves", J. Computational Phys- 
ics, vol. 144, pp. 185-200, Oct. 1994 

[6] W. C. Chew and W. H. Weedon," A 3D perfectly matched medium from modified Maxwell's Equations with 
Stretched Coordinates", Micro. Opt. Tech. Lett., vol. 7, no. 13, pp. 599-604, Sept. 1994 

[7] T. Dhaeneand D. De Zutter, " CAD-oriented general circuit description of uniform coupled lossy dispersive 
waveguide structures," IEEE Trans. MTT., vol. 40, pp. 1545-1559, July 1992. 

699 



W I    ^     ■-   ■ ♦ 
T 

h 

V//////////////////////^^^^ 

z 

Fig. 1. Cross-section of coupled line microstrip system. The perfectly conducting strips have thickness t=0.05mm, 
width w= 0.3mm, and separation s=0.3mm. The substrate height is h=0.25mm and has a relative dielectric constant 
of 4.5. The bottom of the substrate is grounded. 

Fig 2. The normalized current at the source (dash line) and sample (solid line) position. The source current has been 
shifted to compensate for the propagation delay. 
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1. Introduction 

The transient electromagnetic wavefield in an inhomogeneous and lossy medium can be computed 
efficiently by constructing reduced-order approximations to the electromagnetic wavefield quanti- 
ties. Since these approximations are based on Maxwell's equations as a system of first-order partial 
differential equations, they exhibit a specific structure and for the case of a lossless medium we 
can take advantage of this structure in the following way. Given a reduced-order approximation 
for the electromagnetic wavefield present in a lossless medium, we can use this approximation 
to describe the behavior of the electromagnetic field in a corresponding class of lossy media as 
well. The connection between this class of lossy media and the lossless medium is described by 
a correspondence principle. If it is satisfied, is not necessary to start the computations all over 
again. Only a slight modification of the reduced-order approximations is needed. Some numerical 
examples, for two-dimensional configurations, will illustrate this point. 

2. Basic equations 

The pointwise behavior of the electromagnetic field, present in an inhomogeneous, anisotropic and 
lossy medium, is governed by Maxwell's equations written here in the form 

{V + Mi + M2dt) T = S', (1) 
where T = T{x, t) is the field vector consisting of the components of the electric field strength E 
and the magnetic field strength H as 

T = [Ei,E2, Ez,Hi, H2, Hz (2) 

and Q! = Q'(x,t) is the source vector composed of the components of the external electric-current 
sources Je and the external magnetic-current sources K° as 

Q' = -[J!,JI,JIKIKI,KI}T. 

The time-independent matrices M\ and M2 are medium matrices given by 

/ Cl,l 01,2 <7l,3 0 0 0^ 

^2,1 02,2 02,3 0 0 0 

03,1 03,2 03,3 0 0 0 

0          0 0 0 0 0 
0       0      0     0   0   0 

\   0       0      0     000/ 

(3) 

7W,= (4) 
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and 

M2 = 

( £1,1 £1,2 £1,3 0 0      0   \ 

£2.1 £2,2 £2,3 0 0      0 

£3,1 £3,2 £3,3 0 0      0 
0 0 0 ßl.l Ml,2    A*l,3 

0 0 0 M2,l M2,2    £»2,3 

1 0 0 0 ßs,i ^3,2    A*3,3  / 

(5) 

Using energy considerations it can be shown that the permittivity tensor £tj = £ij{x) and the 
permeability tensor ptj = ßij{x) are symmetric and positive definite. Moreover, the conductivity 
tensor a,j = Oij{x) is positive semidefinite and is taken to be symmetric. 

The spatial derivatives are contained in the spatial differential operator matrix 23 given by 

( ° 0 0 0 03 -d 
0 0 0 -ft 0 ft 
0 0 0 ft -9i 0 
0 -ft ft 0 0 0 
93 0 -ft 0 0 0 

\-d2 ft 0 0 0 0 

23 = 

In addition, we introduce the matrices 5E and <5H as 

,5E = diag(l, 1,1,0,0,0) 

and 

(6) 

(7) 

5H = diag(0,0,0,1,1,1). (8) 

These matrices reveal the structure that is present in Maxwell's equations. For example, from the 
equations 

23<5E = SH23 (9) 

and 
23<5H = <5E23 (10) 

it follows that when matrix 23 operates on a vector proportional to the electric field strength, a 
vector proportional to the magnetic field strength results and vice versa. Other relations, involving 
the medium matrices and the matrices <5E and <5H, are 

and 

Mi5E = 5EMi = Mi, 
Mi5E = SHMi = 0 

M25B = 5EM2, 
M25K = 6HM2. 

(11) 
(12) 

(13) 

(14) 

Now, let the source vector be of the form Q'{x, t) = w(t)Q(x), where w(t) is the source wavelet 
that vanishes for t<0 and Q is a time-independent vector. The source vector is said to be of the 
electric-current type if the vector Q satisfies Q = 8EQ and of the magnetic-current type if this 
vector satisfies Q = 5HQ. Since the source wavelet vanishes prior to the time instant t = 0 the 
field vector must do so as well because of causality. 
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Applying a one-sided Laplace transformation to Eq. (1) with respect to time results in the equation 

{V + Mi + sM2)T{x,s) = w(s)Q(x), (15) 

with Re(s)>0. In our further analysis we take s real and positive. Then, Lerch's theorem (see 
Widder [1]) ensures that there is a one-to-one correspondence between a causal time function 
and its Laplace-transform-domain counterpart, provided that the time function is continuous and 
is, at most, of exponential growth as t —> oo and that equality in the definition of the Laplace 
transform is invoked at the real set of points {sn = s0 + nh; n = 0,1,2, • • •}, where s0 is sufficiently 
large and positive and h is positive. 

As a next step, we discretize in space in such a way that Eqs. (9)-(14), valid in the continuous 
context, have a counterpart after discretization. A simple discretization procedure that satisfies 
this requirement is the standard finite-difference technique of Yee [2]. In addition we employ a 
homogeneous Dirichlet boundary condition. The discrete counterparts of T>, Mi, M2,T and Q 
are given by D, Mi, M2, F and Q, respectively. The discrete counterparts of the matrices 5E and 
<5H are denoted by the same symbols. After this discretization procedure, we obtain the algebraic 
matrix equation 

{D + M1+sM2)F(s) = w(s)Q, (16) 
with s real and positive. All the matrices occurring in this equation are square and of order n; 
matrix D is real and anti-symmetric and the medium matrices Mi and M2 are both symmetric, 
M2 being positive definite and Mi being positive semidefinite. 

3. Reduced-order modeling of electromagnetic wavefields in a lossless medium 

Matrix Mi vanishes in case of a lossless medium and Eq. (16) simplifies to 

{D + sM2)F{s) = w(s)Q, (17) 

with s real and positive. An expression for the field vector F(s) may be obtained from Eq. (17) 
as 

F(s) = w(s)(A + sE)'lM^Q, (18) 
where we have introduced the identity matrix E and matrix A as 

A = M2-
lD. (19) 

Because of Lerch's theorem, a unique and causal time-domain counterpart corresponds to the s- 
domain expression for the field vector F(s). Via inspection this time-domain field vector is found 
as 

F(t) = w(t) * X(t) exp(-^)M2-I(3, (20) 
where x(t) is the Heaviside unit step function and * denotes convolution in time. 

Computing the field vector by using, for example, the spectral decomposition of matrix A is 
not feasible due to the large size of this matrix. For example, in a three-dimensional configuration 
the order of matrix A can easily become as large as 106 or even larger. Our approach is therefore 
to construct approximations to the field vector, the so-called reduced-order approximations, that 
are all based on a Lanczos algorithm. In the next subsection we will briefly describe this algorithm 
and we will introduce the reduced-order approximations. 

3.1 The Lanczos algorithm and the reduced-order approximations 

Let (•, •) denote the standard inner product of two vectors from 3R". It is easily verified that 
matrix A is anti-symmetric with respect to the inner product (M2-, ■), that is, matrix A satisfies 

(M2 Ax, y) = -(M2x, Ay),    for all x, y e K". (21) 
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This property allows us to carry out the following Lanczos algorithm with matrix A, 

ßm = M2
lQ, 

ßi+1vi+i = Avi + ßiVi-u    for i = l, 2,..., (22) 

with vo = 0. The coefficients $ > 0 are determined from the condition (M2Vi,Vi) = 1 for i > 1. 
After m steps of this algorithm the summarizing equation 

AVm = VmTm + /3m+1^m+1e^, (23) 

holds. In this equation, the n-by-m matrix Vm has the column partitioning Vm = (v\, v2, ■ ■ ■, i/m), 
matrix Tm is a real, tridiagonal and anti-symmetric rn-by-m matrix containing the recurrence 
coefficients and is given by Tm = tridiag(ft, 0, -A+i) and em is the mth column of the m-by-m 
identity matrix. We are interested in situations where m is much smaller than the order of matrix 
A. 

Using Eq. (23), and not the orthogonality of the Lanczos vectors Vi with respect to the inner 
product (M2-,-), we can construct the reduced-order approximations (see Remis and Van den 
Berg [3 ) 

Fm{t) =w[t)* x(t)ßiVm exp(-rmt)Cl. (24) 
It can be shown that the number of iterations needed to obtain an accurate result on the time 
interval (0,iobs] is proportional to ||A|| tobs, where || • || is the matrix 2-norm. 

For source vectors of the electric- or of the magnetic-current type, the Lanczos vectors, as 
generated by the algorithm described above, are highly structured. For example, assume that the 
source vector is of the electric-current type. Then, after m steps of the Lanczos algorithm we have 

<5Ei>j,   when i is odd, ,„_.. 
SnVi,   when i is even, 

and for a source vector is of the magnetic-current type the Lanczos vectors satisfy 

6KVi,   when i is odd, ,_.. 
6EVi,   when i is even. 

These properties can be proved by an easy induction using the recursion of Eq. (22) and the 
observation that matrix A satisfies A5E = SEA and ASB = SEA. 

From Eq. (25) (Eq. (26)) we infer that in case of a source vector of the electric-current type 
(magnetic-current type), the odd (even) numbered Lanczos vectors built up the reduced-order 
approximation to the electric field strength, while the even (odd) numbered vectors built up the 
reduced-order approximation to the magnetic field strength. Since we want the reduced-order 
approximations to equally update the electric and the magnetic field strength components, we 
will always carry out an even number of Lanczos steps. 

Now, let us introduce the diagonal m-by-m matrices 5£fi1 and S^ as 

e0)=diag(l,0,---,l,0) (27) 

and ,   , 
d<m

0-1)=diag(0,l1---10)l). (28) 
Then, because of Eq. (25), we may write 

5*Vm   =   Vme
0), - (29) 

5HVm   =   Vm5^\ (30) 
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for a source-vector of the electric-current type and 

SEVm   =   Vm5^\ (31) 

6»Vm   =   VmS£fl\ (32) 

for a source vector of the magnetic-current type. These equations show that matrix <J£J'0' describes 
the connection between an electric-current source and the electric field strength or the connection 
between a magnetic-current source and the magnetic field strength. Similarly, matrix 5^ de- 
scribes the connection between an electric-current source and the magnetic field strength or the 
connection between a magnetic-current source and the electric field strength. 

4. Reduced-order modeling of electromagnetic fields in a lossy medium using a 
correspondence principle 

In a lossy medium, the electromagnetic field is described by the field vector 

F(t) = w(t) * x(t) exp(-it)M2-
1Q, (33) 

where matrix A is given by 
Ä = M^1{D + M1). (34) 

For general lossy media we can construct reduced-order approximations to this field vector by 
employing a modified Lanczos scheme, see Remis and Van den Berg [4]. However, for a special 
class of media, that is, media that satisfy a certain correspondence principle, we can compute 
reduced-order approximations to the electromagnetic field in a lossy medium by using results 
obtained for the lossless case. The details are as follows. 

Consider a lossy medium with a conductivity that satisfies the correspondence principle (De 
Hoop [a]) 

°~ij = &i,j, (35) 
where f is a constant. Note that the dimension of £ is the reciprocal of time. A consequence of 
this equation is that matrix A can be written as 

Ä = A + £5E, (36) 
where matrix A is given by Eq. (19). Using the results of the previous section and assuming a 
source-vector of the electric-current type we may write 

ÄVm   =   (A + tfE)Vm = AVm + S6EVm 

=   VmTm + ßm+1vm+1el + ^Vm6^ 

=   Vmfm + ßm+lvm+lell, (37) 

withfm = rm + f41.°). 

-rel _ I 

.rel _ i 

I £rel = 20 

Figure 1. Source and receiver located at the interface in a lossless configuration. The distance between 
the source and the receiver is 4.84 m. An object of 0.88 m x 1.98 m is present in the lower halfspace. 
The top of the object is located 1.98m below the interface. 
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Figure 2. Reduced-order approximations to the electric field strength E% at the observation point after 
300 iterations (o), 400 iterations (b) and 500 iterations (c). The solid line is the converged reduced-order 
approximation. 

Similarly, for a source vector of the magnetic-current type we have 

ÄVm = Vmfm + y8m+ivm+ie£, (38) 

with fm = Tm +ee1'- 
The reduced-order approximation for the electromagnetic field in a medium that satisfies the 

correspondence principle is now given by 
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Figure 3. Reduced-order approximations to the electric field strength E2 at the observation point after 300 
iterations (a), 400 iterations (b) and 500 iterations (c). Results were obtained using the correspondence 
principle. The solid line is the reduced-order approximation obtained by using the modified Lanczos 
algorithm. 

Fm(t) = w(t) * x(t)ßiVmexp{-fmt)ei. (39) 

The only difference between this reduced-order approximation and the one for the lossless case 
is a difference between the diagonals of the matrices Tm and fm. The reduced-order approximation 
to the electromagnetic wavefield in a lossy medium follows immediately from the reduced-order 
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approximation for the corresponding lossless case by adding the appropriate diagonal to matrix 
Tm, provided that the correspondence principle of Eq. (35) is satisfied. For this special case it is 
not necessary to start the computations all over again. 

5. Numerical Examples 

Consider the two-dimensional configuration of Figure 1 in which an inhomogeneous, isotropic 
and lossless medium is present. The configuration is invariant in the rr2-direction and the x3- 
direction points downwardly. An electric-current source excites E-polarized waves and is given 
by 

ri{x1,x3,t)=0,    Je
2(x1,x3,t) = w{t)6{xl-xfc,x3-xf':),    Je

3(xux3,t) = 0.        (40) 

The source wavelet is taken to be a Ricker wavelet and is given by 

^(*) = xW^exp[-e(t-to)2]. (41) 

The parameter 9 is chosen such that the peak frequency of this wavelet is 40 MHz. 

The solid line in Figure 3 shows the converged reduced-order approximation to the electric 
field strength E2 at the observation point. The dashed line in Figure 3a is the reduced-order 
approximation after 300 iterations, in Figure 3b after 400 iterations and in Figure 3c after 500 
iterations. We observe that by increasing the number of iterations, the approximations become 
more accurate on an increasing time interval. 

Now consider a corresponding lossy medium characterized by correspondence constant f = 
6 • 10~4 eöl s_1. In this medium, the upper halfspace has a conductivity of 6 • 10~4 S/m, the lower 
halfspace a conductivity of 3 ■ 10~3 S/m and the object has a conductivity of 1.2 • 10~2 S/m. Using 
the reduced-order approximations of the previous example and adding the appropriate diagonal 
to matrix Tm immediately gives the results as shown in Figure 3. The extra work that is needed 
to obtain these approximations is negligible. In fact, one can study a whole class of corresponding 
media by considering several values for £ at very little extra cost. 

Conclusions 

Reduced-order approximations to the electromagnetic wavefield in a lossless medium exhibit a 
particular structure in case electric- or magnetic-current sources are considered. We have shown 
that, because this structure, these approximations can also be used to describe the behavior of the 
electromagnetic field in media that satisfy a correspondence principle. Only a slight modification 
of the reduced-order approximations is necessary requiring very little extra work. 
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Abstract 

An efficient three-dimensional solver that combines the spectral Lanczos decomposition method 
(SLDM) and the finite-element method (FEM) is described for the solution of Maxwell's equations in 
both time and frequency domains. The FEM based on Whitney forms is used to discretize Maxwell's 
equations and the resultant matrix equation is solved using the SLDM. Our technique is an implicit, 
unconditionally stable finite-element time- and frequency-domain scheme that requires the implemen- 
tation of the Lanczos process only at the largest frequency or time of interest. Therefore, a multiple 
time- and frequency-domain analysis of the electromagnetic fields is performed with minimal amount 
of extra computing time. We illustrate the efficiency, validity, and accuracy of this new method by 
considering numerical examples of an air-filled and a partially-loaded lossy dielectric cavity. 

1    Introduction 

The finite-difference time-domain technique (FDTD) [1] has become the most popular technique for the 
time-domain analysis of the electromagnetic fields. Although it has been applied to numerous scattering 
and radiating problems, in its original form, it suffers from staircasing approximation when modeling 
curvatures. To overcome this problem, hybrid FDTD formulations have been introduced which can 
conform to the surfaces of all boundaries in the solution domain [2-5]. An alternative and rather robust 
approach is to employ the time-domain finite-element methods (TD-FEM). The TD-FEM techniques can 
be categorized by either being explicit [6-8] or implicit [9] time-domain schemes. The TD-FEM explicit 
methods are only conditionally stable with time steps that are typically equal to or smaller than those 
imposed by Courant's stability criterion. The implicit schemes, on the other hand, are unconditionally 
stable while requiring the solution of a matrix equation for every time step. Therefore, for implicit 
methods to be computationally as efficient as the explicit techniques, either the number of iterations 
must be very small owing to the fact that a system of equations is solved at each time step, or an efficient 
procedure for treating the system should be developed. 

Recently, Zunoubi et al [10,11] have employed the spectral Lanczos decomposition method (SLDM) 
[12] to analyze the axisymmetric and three-dimensional diffusion problems. It has been illustrated that 
accurate results can be obtained at many frequencies with a negligible amount of extra computing time 
while the Lanczos process is implemented only at the lowest frequency of interest. 

In this contribution, we introduce an efficient solver for the frequency- and time-domain analysis 
of the electromagnetic fields in an inhomogeneous lossy medium. The finite-element method based on 
Whitney forms Is used to discretize Maxwell's equations and the resultant matrix equation is solved by 
the SLDM. We illustrate the efficiency, accuracy, and validity of the present formulation by considering 
numerical examples of the air-filled and dielectric-loaded microwave cavities. 
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2    Finite-Element Formulation 

Maxwell's equations can be discretized using the finite elements based on Whitney forms. These equations 
can be written in space-time 3S4 as 

_   _       dB. 

<9E 
VxH = J + €^r + CTE. (1) 

dt 

If a lossless medium is assumed, (1) can be solved for the electric field intensity so that 

„    (\„    „\      02E       03 .,, VxtVxE)+e^ = -öF (2) 

with the boundary conditions 

n x E = 0 on electric walls, 

» x V x E = 0 on magnetic walls. (3) 

The solution of (2) and (3) is equivalent to seeking the stationary point of the functional given by [13] 

fw=l//X[?(vxB)-(vxB)+eE-SE]dv-//XSw' (4) 

with V denoting the volume of interest. We discretize the above functional by first subdividing V into 
small elements and expanding the electric field as 

N 

E(z,t,,Z) = ;£>;(*, j/,*)Ei, (5) 

where N; denotes the expansion function associated with edge i, Ei denotes the associated tangential 
electric field, and jV denotes the total number of edges in V. If we now substitute (5) into (4) and apply 
the Rayleigh-Ritz procedure, the following matrix equation is obtained 

vhere {£} = [Eu E2, ■.., EN]T, and 

C,-,y=///Ki(VxN,-)-(VxNJW, 

* = JJJvVrW (7) 
The above matrix equation can be solved by the SLDM. 

If we now consider solution domains containing losses, then we obtain the solution of (1) and (3) by 
exteremizing the functional 

F™ = - ill£E' mEdV ~ Hi*E •M"+//X(v x E)'Hfn/ - IIIJ •M' 
F(H) = JjJ /JH ■ JjHdK + llj H • (V x E)dV. (3) 
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Again, we discretize above functionals by subdividing the solution domain into small elements and 
expanding both the electric and the magnetic fields as 

Nc 

E(i,y,z) = ^Ni(i,j/,z)JE,i, 
1=1 

N, 

H(x,y,z) = '£lJj(x,y,z)Hj, (») 

where N; and U,- denote the expansion functions associated with edge i and face j, E{ and Hj denote the 
associated tangential electric field and normal magnetic field, and Nc and Nj denote the total number 
of edges and faces in V, respectively. If we next substitute these approximations into (8) and impose the 
stationary condition, we obtain the matrix equation 

U(ts)+(*?)Hs}-{{}- 
w here E=[EU Eh,..., ENe]T, H = [HltH2,..., HN,]T, and 

*y = -//£**■ *W 

fi = JJj3.NidV. (11) 

For simplicity, Eq. (10) can be written as 

(±[T] + [D]){x} = {b}. (12) 

Equation (12) can also be solved by the SLDM which is discussed in the next section. 

3    Spectral Lanczos Decomposition Method 

To solve Eq. (6) by the SLDM, we first cast this equation to a form 

where / is the identity matrix. Therefore, we convert matrix T in (6) to a diagonal matrix by the lumping 
procedure to obtain 

'c+^D)E = ±b. - (14) 
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Note that the brackets for the notation of matrices and vectors are omitted in this section for the sake 
of convenience. We can further write (14) as 

(' 
-1/2CD-^ + P 

)" dt 

* + P)*=& 
where A' = D~ll2CDll2, E' = D^E, and 6' = D~ll2b. If we define 

b'(r,t) = b'(r)[u(t)-u(t-T)}, 

where u denotes a unit step functions, and apply the Laplace transform to (16), we can write 

1- -Ts 

s2I + A' 
E'(s) = b'(v) 

Following the inverse Laplace transform of (18) yields 

E'(t) = y=[- sin y/Ä't + sin y/I^t - T)] . 

By performing an identical procedure, (12) can be written as 

(ff+!/)•=b-, 

with D' = T-^^DT1!2, x' = Tll2x, and V = T~ll2b and the unknown vector x' can be determined in 
frequency- and time-domain as 

l-e~ 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

*'(«) = b'(v) 

and 

x'(t) = b'(v) 

s{sl + D>) 

e-D't + e-D'((-T) 

£>' 

(21) 

(22) 

respectively. It is evident that the electric and magnetic field intensities can be analytically determined 
in both frequency and time domains from the above expressions. Note also that the time-dependence 
in (17) is not the only choice; other time functions can be chosen as well provided that their Laplace 
transforms exist. 

The unknown vector E' or x' in the previous equations is approximated by replacing matrices A or 
D' with their M(< N or < (Ne + Nj)) eigenvalues and eigenvectors which are obtained from asymmetric 
tridiagonal matrix, H, generated from A' or D' via an orthogonal transformation, or more specifically, the 
Lanczos process. If we further define A and V to be the eigenvalues and their corresponding eigenvectors 
of matrix H, respectively, then we can write 

H = VAVT,      A = diag[A1,A2,...,AM]. 

The unknown vectors E' and x' can then be determined as 

E'(S) = mm 
s2I + A 

VT
ei, 

(23) 

(24) 
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E'(t) = \\b'\\QV 
- sin yfKt + sin VX(t — T) VTeu 

and 

x'(s) = \\b'\\QV 

At) = W'WQV 

1-e -Ts 

s(sl + A) 

_e-A( + e-A((-T) 

VTeu 

VTeu 

(25) 

(26) 

(27) 

respectively, where ei = (1,0,0,.. .,0)T is the first unit M vector and Q is a matrix containing the 
Lanczos vectors. We further note that matrix A' and D' in the above equations are sparse symmetric 
real and complex matrices, respectively. Therefore, the Ritz approximation matrix H of A' is a real 
tridiagonal matrix whereas that of D' is a complex tridiagonal matrix. 

For approximate computations of the eigenpairs of A' and D', we implement the PWK and inverse 
iteration algorithms, and the complex QL and complex inverse iteration algorithms, respectively. 

4    Results 

The time- and frequency-domain techniques described above have been implemented and applied to 
several geometries. To validate our formulation, we first consider an air-filled microwave cavity which 
has unequal side lengths of 4.5 m, 3.5 m, and 2.5 m. The cavity is subdivided into 18, 14, and 10 
segments in x, y, and z directions, respectively, resulting in 6,458 unknowns. To excite the cavity modes, 
a short pulse of duration T = 1.92ns positioned near a corner of the cavity is used. A frequency range 
from 50 to 120 MHz is considered. First, we calculate the magnitude of the electric field inside the 
cavity via the SLDM at the largest frequency of interest, 120 MHz, and then we use the same Q and 
H matrices to evaluate the field at the remaining frequencies. A frequency increment of 0.1 MHz is 
chosen resulting in 699 frequency samples. The frequency spectrum of the field is plotted in Figure 1(a) 
indicating the resonant peaks. The total CPU time for above computations is 32.5 seconds while requiring 
270 SLDM iterations. The CPU time to compute the field at 120 MHz is on the other hand, 27.4 seconds 
illustrating that only 5.1 seconds are needed to obtain the results at the remaining 699 frequencies. 
The above multiple frequency analysis is verified by evaluating the field at each single frequency in the 
above range and plotting the number of SLDM iterations. Results are depicted in Figure 1(b). It is 
clearly seen that as the frequency increases the number of iterations increases accordingly. Therefore, we 
can use the same H matrix generated at / = 120 MHz to compute the results at the lower frequencies. 
Additionally, the computed resonant frequencies are compared with their corresponding analytical values 
and the results are given in Table 1. As can be seen from this table, an excellent agreement is achieved. 

Next we evaluate the electric field intensity at the center of the cavity using expression (19). Since a 
short pulse contains high frequency components, we use a tapered sine function 

(28) b'(r,t) = 6'(r) [(1 - e-at)sin(bt)u{t)] 

with a = 0.26118x10s and b = a/5, to excite the cavity. The results are compared with the corresponding 
results obtained from the FDTD and the comparison is seen in Figure 2(a). As can be seen from this 
figure, a good agreement is observed. If we use a low-pass filter on the input signal, more accurate results 
are obtained as shown in Figure 2(b). 

Finally, we present the numerical analysis of a partially-filled lossy microwave cavity as illustrated 
in Figure 3. We use the source described by (28) to excite the cavity. A time step of At = 0.1924ns is 
chosen and the magnitude of the electric field is computed at the center of the cavity at the largest time 
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of interest, t = 96.2ns, while the same H matrix is used to calculate the field in a time period from 0 to 
96.2ns. The results are compared with the corresponding FDTD results and the comparison is given in 
Figure 4. To minimize the effect of the high frequency components, we use a low-pass filter on the input 
signal. As can be seen from Figure 4(a), a good agreement is observed. Next, we use Eq. (26) to obtain 
the frequency spectrum of the field at the cavity center. A short pulse with T = 0.5772ns is used for 
excitation. Results are computed at the highest frequency of interest, 220 MHz, and the same H matrix 
is used to obtain results in a frequency range from 0 to 220 MHz. The frequency spectrum of the field 
is given in Figure 4(b). A good agreement is achieved. 

5    Conclusion 

A new, efficient time-domain and frequency-domain finite-element solver that can treat various practical 
electromagnetic problems with a large number of unknowns is introduced. The finite-element method 
(FEM) is used to discretize Maxwell's curl equations and the resultant matrix equation is solved by 
the SLDM. Our formulation is capable of obtaining results in both frequency and time domains. The 
efficiency and accuracy of the present technique are demonstrated by considering numerical analysis of 
microwave cavities. 
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Table 1: Resonant frequencies of a 4.5m x 3.5m x 2.5m cavity resonator using 
frequency-domain analysis. 

Mode 110 101 011 210 111 201 120 211 220 310 121 301 

Exact (MHz) 54.3 68.6 73.7 79.2 80.9 89.7 92.0 99.4 108.6 108.8 109.8 116.6 

FEFD (MHz) 54.1 68.4 73.4 78.7 80.7 88.9 91.3 99.0 107.6 108.6 109.2 115.0 

% Error 0.37 0.29 0.4 0.63 0.24 0.89 0.76 0.4 0.9 0.18 0.15 1.37 
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(a) (b) 

Figure 1: (a) Typical frequency spectrum of a 4.5m x 3.5m x 2.5m resonant cavity, (b) Number of SLDM 
iterations versus frequency. 

(a) 0) 

Figure 2:  A comparison of the FESLDM and FDTD response of the air-filled cavity excited by (a) 
tapered sine function and (b) tapered sine function with a low-pass filter. 
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Figure 3:  The problem geometry of a lossy dielectric loaded microwave cavity with x = 2.6m, y 
1.6m, z - 1.0m, a = 0.6m, b = 0.4m, c = 0.3m, <rr = 4.0, and c = 0.015/m. 

(a) (b) 

Figure 4: A comparison of the FESLDM and FDTD response of the lossy dielectric loaded cavity,  (a) 
time-domain, (b) frequency-domain. 

720 



Passivity of Discrete Electromagnetic 
Systems 

Andreas C. Cangellaris* and Li Zhao** 
(*) ECE Department, University of Illinois at Urbana-Champaign 

Urbana, H 61801, U.S.A. 

(**) ECE Department, University of Arizona 

Tucson, AZ 85721, U.S.A. 

Abstract 

The issue of passivity of discrete approximations to electromag- 
netic systems that are passive in their continuous form is examined in 
this paper. Discrete model passivity is important both for numerical 
stability purposes and for the development of passive reduced-order 
models of the system for use in network-oriented circuit simulators. It 
is shown that the passivity of the semi-discrete model obtained from 
the numerical discretization of the spatial derivatives in Maxwell's 
equations can be examined in terms of the properties of the result- 
ing matrix representations of the curl operators. In particular, a set 
of constraints on these opeartors is derived which, if satisfied, will 
guarantee the passivity of the state-space representation of the semi- 
discrete electromagnetic model. 

1    Introduction 
The process of developing a discrete model for the transient simulation of 
electromagnetic wave intearctions begins with the development of a semi- 
discrete approximation to Maxwell's equations. More specifically, the spatial 
derivatives in the system are approximated through a desired finite method 
(finite difference, finite element, finite volume, or more sophisticated spectral 
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and wavelet methods) on a properly constructed numerical grid. This process 
results in a system of state equations for the degrees of freedom in the nu- 
merical approximation which, in the most common cases, turn out to be the 
unknown time histories of the electric and magnetic field components on the 
grid. This spatial discretization step is followed by the application of some 
numerical algorithm for the numerical integration (in time) of the system of 
state equations (e.g. leap-frog, backward Euler, Runge-Kutta, etc.). In se- 
lecting the numerical integration algorithm, the issue of numerical stability is 
of primary importance. Of relevance here is Lax's equivalence theorem which 
states that if a linear finite-difference equation is consistent with a properly 
posed linear initial-value problem then stability guarantees convergence [1]. 
(A finite-difference scheme is said to be consistent if it has a solution that 
converges to the solution of the original differential equation as the mesh 
lengths, both in space and time, tend to zero.) Clearly, numerical stability 
is highly desirable since it is so tightly coupled to convergence. 

Despite the significant attention paid to numerical stability, little atten- 
tion is given to whether the state system of equations resulting from the 
spatial discretization of Maxwell's equations maintains the passive character 
of the continuous system (assuming, of course, that all media present are 
passive). Nevertheless, the passivity of the resulting semi-discrete system 
is important since, if guaranteed, numerical solutions of the system, gener- 
ated by means of a stable integration algorithm, will converge to the correct 
solution and will not exhibit any (non-physical) instabilities. 

Furthermore, passivity of the discrete model is essential when the de- 
velopment of reduced-order models, expressed as Pade approximants, for 
electromagnetic systems are sought for the purpose of efficient system macro- 
modeling and incorporation in network-oriented circuit simulators. A variety 
of such model-order reduction methods have been proposed recently both 
for lumped circuits [2]-[4], and distributed electromagnetic systems [5]-[10]. 
When macromodels for multiports are connected together, it is important to 
keep in mind the fact that interconnections of stable systems may not neces- 
sarily result in stable systems; however, interconnections of passive circuits 
always result in systems that are passive and, hence, (asymptotically) stable 
[11]. This, then, implies that it is not enough for an electromagnetic macro- 
model to be stable. What matters, when this macromodel is to be connected 
with other functional blocks, is for the macromodel to be passive. 

Even though not done routinely, semi-discrete approximations to Maxwell's 
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hyperbolic system for electromagnetic propagation in passive media are often 
checked for conservation of charge and conservation of energy. Such tests are 
clearly tests of passivity. In this paper, an alternative approach is discussed 
for the examination of passivity of semi-discrete approximations to Maxwell's 
equations. The proposed approach involves the matrices resulting from the 
discretization of the curl operators and (in the general case) any boundary 
conditions used on surfaces terminating the computational domain. In par- 
ticular, a relationship between these matrices is derived which, if satisfied, 
will guarantee the passivity of the discrete model. 

2    The Semi-Discrete Electromagnetic Model 

While a variety of approaches exist for the spatial discretization of Maxwell's 
equations, the semi-discrete approximation effected through the use of Yee's 
lattice [12] is chosen for the purposes of this paper. The reason for this 
choice will become apparent when the passivity of the semi-discrete model is 
considered later in the paper. 

A uniform, rectangular lattice is assumed, defined by equally spaced nodes 
along the three axes of a cartesian coordinate system: I along x, J along y, 
and K along z. The total number of nodes in the grid is N = I ■ J ■ K. With 
the definitions U = 1,V = I, W = I-J, the nth electric node, corresponding 
to node (i,j,k) in the grid, is given by 

n = l + {i-l)U + (j - l)V + (k- 1)W (1) 

where i = 1,2,... ,7, j = 1,2,..., J, k = 1,2,... ,K, and n = 1,2,.. .,N. 
It is assumed that the media are linear, passive, and time-independent. 

Thus, Maxwell's curl equations in the Laplace domain assume the form 

V x E = -sßH (2) 

V x H = seE + aE + Js (3) 

where the electric permittivity, e, electric conductivity a, and magnetic per- 
meability, ß, are, in general, position dependent. The dependence of the 
electric and magnetic field vectors E and H, as well as the imposed source 
current density Js, on position, and the Laplace variable s is suppressed for 
simplicity. 
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In order to cast the semi-discrete form of Maxwell's equations in a matrix 
form, we begin with the definition of the following two vectors of discrete 
unknowns 

E = [Ejc,Ey,Ez] 

H = [Hx,Hy,Hz] 
(4) 

(5) 

where Ex is a vector of length N, containing the N Ex values on the grid, 
with similar definitions for the remaining five vectors. Using the definitions 
in (4),(5) and writing the curl operator in its matrix form 

Vx = 
0   -d/dz     d/dy 

d/dz    0 - d/dx 
-d/dy      d/dx 0 

(6) 

it is straightforward to show that the semi-discrete form of (2),(3) can be 
written as 

0 A     1 

-AW
T 0 

L   A/ -AU
T 

0 -Aw Av   1 
Vw 0 -A„ 
Av Au 0 

A   l E = -sDhH 

H = sDeE + D^E + Js 

(7) 

(8) 

In the above equations, the matrices Au, Av, Aw are sparse with only two 
bands having nonzero elements: one band is along the diagonal with all values 
equal to 1, and the second band at a distance of U, V, W, respectively, to 
the left of the diagonal with all values equal to —1. The matrices De, Dn, 
Do- are diagonal matrices with elements dependent on the electromagnetic 
properties of the media and the grid size. 

The system of (7),(8) may be cast in a compact form by defining the 
vector of state variables X = [H, E]T, and the 3N x 3N matrix, P, 

P = 
0 Aw -Av 

-Aw 0 Au 
Av -Au 0 

(9) 

In addition, since the objective is to develop reduced-order macromodels for 
multiport electromagnetic systems, the source notation is slightly modified 
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to include the imposed currents used for the excitation of the ports. For this 
purpose, it is assumed that the electromagnetic system under consideration 
has p ports, each coinciding with one electric field node, and a constant 
matrix B of dimenion 6iV x p is introduced, with nonzero elements only 
in its bottom 3N rows associated with the electric field nodes in the state 
vector X. The specific values of these elements will depend, in general, on 
the source distribution and numerical grid characteristics. Using the vector 
U(s) to denote the Laplace transforms of the current source waveforms at 
the p ports, the discrete source term may be cast in the form BU(s). With 
these definitions, the resulting compact form of (7), (8) is, 

X-BU(s)        (10) 
0     PT 

-P     0 x = = — S 
0 

0 
De 

X- 
0 
0 

0 

or, in a yet more compact form, 

(G + sC)X = -BU(s) 

where 

c X =; 
0 

-p 
PT 

,      < 
f-l   Dh 

0 
0 

De 

(11) 

(12) 

Because of the assumed passivity of the media, the matrices De, Dh are 
(symmetric) positive definite and Ha is (symmetric) non-negative definite. 
Consequently, C is also (symmetric) positive definite. 

Defining a desired output vector as Y(s) = FX(s), where F is a selector 
matrix, we have 

Y(s) = F(G + sC)-1BU(s) (13) 

For the case of multiports, the number of outputs is the same with the num- 
ber of inputs. More specifically, with the selection of the current density 
as the excitation at each port, the electric field vector (or, equivalently, the 
voltage at the port (if the definition of the voltage makes sense) becomes the 
output quantity. For such cases, the selector matrix F is a p x 6N matrix, 
with constant, non-zero entries at the right half of each of its rows, corre- 
sponding to the electric field unknowns in the state vector X. In particular, 
except for a scaling constant factor associated with the proper definition of 
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the observed output quantity at the port, the selector matrix F is simply 
the transpose of the source matrix B defined earlier. Thus, the electromag- 
netic characterization of multiports is effected in terms of a transfer-function 
matrix, H(s), which, in view of (13), is given by 

H(s) = BT(G + sC)-1B (14) 

3    Passivity of the Discrete Model 

As already mentioned in the introduction, reduced-order model representa- 
tions of passive electromagnetic multiports are extremely useful when these 
multiports constitute parts of more complex functional blocks. For the pur- 
poses of design-driven simulation at the functional block level, a network- 
oriented simulation approach is used. The incorporation of the reduced-order 
models for the electromagnetic multiports in the overall network-oriented cir- 
cuit simulator may be effected either through recursive convolution, utilizing 
the pole-residue representations of the elements of the transfer function ma- 
trix [13], or through the direct incorporation of the state-space representation 
of the reduced system in the circuit simulator [14]. In either case, the passiv- 
ity of the reduced system needs to be verified in order to avoid non-physical 
instabilities in the subsequent simulation of the overall circuit. However, it is 
meaningless to talk about passivity of the reduced-order model without es- 
tablishing first the passivity of the original discrete model. The investigation 
of the passivity of the system of (11) is the topic of this section. 

Our analysis makes use of the following useful results [15]: 
Theorem 1: The transfer function matrix H(s) of a passive (linear, solve- 

able, time-invariant) network is positive-real; that is, 

a) Each element of H(.s) is analytic for Re(s) > 0. 

b) H(s*) = H*(s) for Re(s) > 0. 

c) Hk(s) = H*T00 + H(s) > 0 for Re{s) > 0. 

Theorem 2: If a matrix, A, is positive-real, then so is its inverse, A-1, if 
it exists. 

Theorem 3: If A is positive-real and A/, = A*r + A > 0 for Re(s) > 0, 
then A-1 exists. 
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Theorem 4: If B is a real constant m x n matrix and A(s) is an m x m 
positive-real matrix, then BTAB is an n x n positive-real matrix. 

With the output defined as Y(s) = BTX(s), the transfer function of (11) 
is given by 

H(s) = -BT(G + sCy'B (15) 

According to Theorem 1, the discrete approximation to the system of Maxwell's 
equations will be passive if H(s) is positive-real. However, the matrix B in 
(15) is a real constant matrix.   Thus, in view of Theorems 2,3, and 4, to 
prove the passivity of the discrete system of (11) it suffices to show that the 
matrix S = G + sC is positive-real and Sj, > 0. 

This takes us back to Theorem 1 in which the three requirements for a 
matrix to be positive-real are given. First, we note that matrices G and C 
are real. Hence, requirements (a) and (b) are automatically satisfied. To 
prove that requirement (c) is also satisfied, strengthened by the additional 
requirement that S^ > 0, we need to show that z*T (S*T + SJ z > 0 for 
Re(s) > 0 and for any complex vector z. Setting s = a + ju, one obtains 
after some straightforward matrix algebra 

z'T (S*T + S) z = z*T [(G + GT) + a (C + CT)) z (16) 

where use has been made of the fact that C is symmetric. Finally, using the 
fact that C + CT = 2C, the above equation may be cast in the form 

z*T (S*T + S) z = z*T [(G + GT) + 2aC] z (17) 

Since C is positive definite, it follows immediately that 2az*TCz > 0 for 
a > 0. Furthermore, using the fact that G is skew-symmetric (see (12)), it 
is straightforward to show that 

G + Gr = 
0      0 
0   2D, 

(18) 

But Dj is a non-negative definite matrix; hence, z*T (G + GT) z > 0. Thus, 
we conclude that the product in (17) is positive definite for any complex 
vector z and for Re(s) > 0; hence, the discrete system of (11) is passive. 
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It is important to point out that critical to this proof of passivity of the 
discrete system was the fact that the matrix G was skew-symmetric. Clearly, 
this skew-symmetry of G is a direct consequence of the uniformity of the (or- 
thogonal) cartesian grid used for the discretization, as well as the staggering 
of the electric and magnetic field nodes. From a numerical integration point 
of view, it is extremely useful to be able to validate that the (semi-discrete) 
system of state equations resulting from the numerical approximations of the 
spatial derivatives is passive, since passivity guarantees stability and thus a 
stable numerical solution will always be achieved with a stable integration 
algorithm. Proof of passivity of the semi-discrete system when unstructured 
grids are used is rather cumbersome since, in most cases, it can be effected 
only through an eigenvalue analysis. 

Taking a closer look at the structure of the matrix G, it becomes ap- 
parent that the specific form of the numerical approximation of the two curl 
operators in Maxwell's system plays an important role on the passivity of the 
approximation. In order to account for the general case, let Pm and Pe de- 
note the matrix approximations resulting from the discretization of the curl 
of the magnetic and electric field, respectively, over the entire computational 
domain. Then, the matrix G assumes the general form 

GEE 
0 

-Pn 

Pe (19) 

and thus, the requirement for passivity of the approximation centers around 
the properties of the matrix 

Gh = G + G1 = 
(Pe 

0 (Pe - Pm3) 
- Pm

T)r 2D„ 
(20) 

More specifically, considering that D„ is non-negative definite, the passivity 
of the numerical model depends solely on the properties of the matrix Q = 
Pe — PmT- To elaborate, let us expand the term z*r(Gfe)z, where z is written 
in the form 

zi 
Z2 

(21) 

It is then 

ZI Z2 
0      Q 

QT   2D, 
zi 
Z2 
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zi*TQz2 + [(zi^Qzz)1]* + 2z2*TDcrZ2 = 

2Äe{zi*rQz2} + 2z2*TD<,Z2 (22) 

where use has been made of the fact that Q is real. The second term in 
the last equation is always non-negative. Considering that it is common to 
assume loss-free media for numerical wave simulation purposes, the passivity 
of the numerical model depends on whether the first term in (22) is non- 
negative for any z. Clearly, this is ensured when Q = 0 or, equivalently, Pe = 
Pm . As already seen in the first part of this section, this occurs naturally 
when the (structured) Yee's lattice is used for the discretization. For other 
discretization choices, the passivity of the discrete model can be evaluated by 
examining the matrix Pe — Pm

r- If this matrix is non-negative, the discrete 
model is certainly passive and its numerical integration (with a numerically 
stable integration scheme) will lead to a stable numerical solution. 

4    Concluding Remarks 

The general result of this paper may be stated as follows: "The system of 
state equations resulting from the discretization of Maxwell's curl equations 
in passive media is passive if the matrix Pe — Pm

T is non-negative definite." 
In the absence of any boundary conditions, Pc is the matrix representation 
of the discretization of V x E, and Pm is the matrix representation of the dis- 
cretization of V x H. Actually, for the general case, boundary conditions on 
surfaces terminating the computational domain must be taken into account. 
In their discrete form such conditions lead to modifications in the matrices 
Pe and Pm, as well as the matrix C in (11), and thus impact passivity. 
Nevertheless, the aforementioned stated requirement for passivity still holds. 

For the case where the structured, rectangular Yee's lattice is used for the 
spatial discretization of Maxwell's equations, proof of passivity is trivial since 
Pe ~ PmT = 0. The case of unstructured grids is definitely more difficult to 
investigate. 

The impact of typically encountered boundary conditions (e.g., impedance 
boundary conditions and absorbing boundary conditions) on the passivity of 
the discrete model will be discussed in detail in a forthcoming paper. Prelimi- 
nary work has addressed this issue for the case of one-dimensional distributed 

729 



electromagnetic problems, with specific application in the transient analysis 
of transmission lines [16]. It was shown that, despite their superior computa- 
tional efficiency and accuracy, spectral Chebyshev approximations of the hy- 
perbolic system of the transmission line equations [8] lead to discrete models 
which are not passive. The difficulties with the stable numerical integration 
of such approximations using explicit schemes are well-known [17]. 
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Abstract 

Model order reduction of the linear system provided by the application of the spectral Galerkin 
method to multiple screen Frequency Selective Surfaces (FSSs) is demonstrated. The original spectral 
Galerkin system has a nonlinear frequency dependence which is approximated by an osculatory 
polynomial interpolant and subsequently expressed in a linearized companion form. A rational 
interpolant reduced order model for the reflection coefficient of the FSS as a function of frequency that 
matches the linearized system reflection coefficient and its derivatives at several select frequencies is 
generated using rational Krylov techniques. For an FSS originally modeled with a spectral Galerkin 
system involving hundreds or thousands of unknowns, this procedure results in a system of fewer than 
twenty unknowns which accurately reproduces the behavior of the original system over a large 
frequency band. 

1.   Introduction 

Multiscreen Frequency Selective Surfaces (FSSs) (Fig 1.) are useful over a broad part of the 
electromagnetic spectrum as frequency or angular filters, and they have been especially important in 
satellite communications where they find use as subreflectors in dish antennas. The most popular 
analysis method for FSSs is the spectral Galerkin method, which is a derivative of the Method of 
Moments (MoM) for the analysis of planar periodic structures illuminated by a plane wave. While both 
full domain and subdomain basis functions have been used to represent the current on the FSS for the 
MoM analysis, this paper considers the more general subdomain case. When subdomain basis functions 
are used, the metallized portions of the FSS are partitioned into n basis functions of identical shape over 
a grid of regularly spaced, equally sized regions of support [1]. The application of the spectral Galerkin 
method to the discretized FSS structure results in system of equations for i„,(/), the weighting 
coefficients associated with the n bases, and a linear relation between the FSS specular reflection 
coefficient R„,(f) and i„,(/) which may be expressed as 
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A„(/)i„(/) = b„(/) 

«„(/) = <,(/)!„,(/), 

where A„,(/) is an nxn system matrix, and b„,(/) and cn((/) are input and output n vectors, 
respectively, all depending nonlinearly on the frequency / [1]. The asterisk denotes the complex 
conjugate transpose operator. 

While the spectral Galerkin technique is a powerful method for calculating the reflection coefficient 
of an FSS at a given frequency, the iterative application of this method to characterize FSS behavior over 
a band of frequencies can be computationally very intensive. For each frequency of interest, the 
technique involves the summation of doubly infinite series to construct the system, and a solution of an 
nxn system of linear equations. The goal of this paper, therefore, is to accelerate the calculation of 
R(f) by introducing an approximation to system (1) of the form 

/E-AJi(/) = b 
(2) 

£(/) = c'i(/) 

where R(f) = R„,(f), E and A are small, constant, mxm matrices, b and c are constant complex m 
vectors, and i is an m dimensional state vector. The system size m is typically on the order of ten. This 
process is known as model order reduction [2], and though it has been used for several years in circuit 
and interconnect characterization, its application to integral equations is quite recent [3]. This new 
system will be constructed so that R matches Rnl and its derivatives at different frequency points in the 
band of interest. Because of the small size and simple frequency dependence of (2), R can be cheaply 
calculated for a large number of frequencies. 

2.    Formulation 

In this section, the model order reduction of (1) is discussed. The construction proceeds in three 
steps to be discussed in turn. Section 2.1 discusses the elimination of the frequency dependence of the 
input and output vectors of (1). Section 2.2 then demonstrates the linearization of the system using an 
osculatory polynomial interpolant. Finally, Section 2.3 describes the construction of the reduced order 
model (2) using the Dual Rational Arnoldi (DRA) algorithm [4]. 

2.1  Constancy of Input and Output Vectors 

Because the formulation of the FSS scattering problem has been well documented in the literature 
[1], the construction of system (1) is not detailed here. However, it is important to note that because (1) 
results from the application of the spectral Galerkin method with uniformly spaced basis functions, it 
may be solved for the current weighting coefficient vector i„,(/) using an iterative method where matrix 
vector multiplication is accomplished using the Fast Fourier Transform (FFT) [1]. 

The frequency dependence of the input and output vectors of (1) can be removed with a change of 
state variables and a matrix multiplication. Define 

733 



b„(/) = B(/)u 

i0(/) = C*(/)i„,(/) 

where B(/) and C(/) are n x n diagonal matrices with diagonal elements equal to the elements of 
b„,(/) and c„,(/) respectively, and u is an n vector of all ones. Rewriting (1) in terms of the new state 
variables i0(/) and premultiplying the state equations by B~'(/) yields a new system 

A:,(/)i„(/) = u 

*„,(/) = u'i0(/) 

where A'n,(f) = C'(f)AJf)B'\f), and C"*(/) = (C"'(/))*. It is important to note that even after this 
transformation, the A^,(/) can still be multiplied with an arbitrary vector using the FFT, so that (4) may 
be solved for the current as efficiently as (1). This property is of great importance to ensure that the cost 
associated the construction of the reduced order model does not outweigh its benefits once generated. 

2.2    System Linearization 

Equations (4) are now in a form where they may be approximated easily by a canonical linear 
system. To accomplish this, an osculatory polynomial interpolant of order N„d for A'nl(f) is 
constructed using a generalized form of the well-known Newton divided difference algorithm [5]. 
Assuming that A^,(/) is to be interpolated at the frequencies fj,   j = 0 Nord, this process results in 
an expression of the form 

A;,(/)=lA;n(/-/,). (5) 

Using inverse synthetic division [5], (5) can be expressed as a sum over powers of a single monomial as 

A:,(/) = 5A,.(/-/„P)'' (6) 

where /„ is an expansion point chosen near the center of the band to make the calculation of the A,, 
from the A' stable. Defining 

i, = [f-fjk.   i = l-N„rd-h (7) 

an approximation to system (4) can be written in canonical linear system form as 

[(/-/„p)E-A]i = b (g) 

i?(/) = c*i 

where /?(/) - R-nl(f), 
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E = A = (9) 

-An -A, 

. No 
i"=|i0 i; ••■ i'N _,], b*=[0* ••• 0' u*], c*=[u* 0* ••• 0*], and I is the identity matrix 
[3]. Note that (8) isln the canonical state space form with a frequency shift that can be ignored if the 
substitution / - /„„ -» / is made. Like the system matrix A'n,(f), each A,, can be multiplied with a 
vector using an FFT, thus preserving the efficiency of the method. 

2.3   Model Order Reduction 

Because model reduction algorithms are generally formulated in terms of state space system 
representations, a reduced order model of (8) can be generated readily [5]. The reduced order system (2) 
is constructed to match the transfer function of (8) and its derivatives at selected interpolation points 
fw, k = 1,...,K; such a model is known as a rational interpolant. Specifically, rectangular matrices Z 
and V are sought such that a reduced model of (8) of can be found in the form shown in (2) where 
E = Z'EV, A = Z*AV, b = Z*b, and c = V*c. The V and Z needed to generate a rational interpolant 
can be described with the following theorem [4]: 

Let 3C7(G,g) = |g,Gg,G2g,...,G''~1g} be the Krylov subspace of dimension J generated by the square 
matrix G and the vector g. Furthermore, denote the space spanned by the columns of an arbitrary 
rectangular matrix H as colsp(H). If 

\JXj* ((A - fwE)~' E,(A - /(i,E)"' b) c colsp(V) (10) 

and 

then 

(jXji ((A - /WE)~*E',(A - /WE)~' c) c colsp(Z) (ID 

-c*[(A - /WE)"' E['"' (A - fwE)~' b = -c'[(Ä - fE)'1 E]" "'(Ä - /W
E)~' b (12) 

for \<jk< Jh
k +Jc

kaadl<k<K, where E = Z'EV, A = Z*AV, b = Z*b, and c = V*c. 

The quantities on the left and right hand sides of (12) are seen to be the reflection coefficient and its 
derivatives at the interpolation points, so the V and Z of (10) and (11) generate the required model. 
While many algorithms exist to construct such V and Z, this paper uses DRAto ensure that the model is 
produced in a numerically stable fashion [5]. 
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3.    Numerical Results 

In this section, the application of the above procedure is demonstrated for six different two-screen 
FSSs with square periodic cells illuminated by a normally incident wave with electric field vector aligned 
along the x axis (Fig. 1). The periodic cell for each of the six examples is shown in Figure 2, and both 
screens of each FSS are identical. The screens are discretized on a 16x16 grid using the procedure 
given in [1]. If the side of a periodic cell is denoted by Ax, the screens are separated by a distance 
Ax/10. 

The response of each screen was calculated using the MoM, the polynomial interpolant system (9) 
discussed in Section 2.2, and a reduced order model generated from it by the DRA. The results are 
plotted in Figure 3 versus a normalized frequency 

/ = ^L (13) 
c 

where / is the frequency of the wave and c is the speed of light. Each FSS was analyzed over a 
normalized frequency band 0.05 < / < 0.95. The plots of Figure (3) were produced using a osculatory 
polynomial interpolant constructed to match the value of A^,(/) for normalized frequencies fi at the nine 
Chebyshev nodes 

jj=.5-.45cosp^),   .- = 0,...,9 (14) 

as well as the derivative of A.'n,(f) at the interpolation point ft. A reduced order model of order 14 was 
then produced from this interpolant with K=l, Jb

k =Jc
k=2 and interpolation points with normalized 

frequencies of /(*>=.l,.3,.4,-5,.6,.7, and .9. While the Chebyshev nodes are chosen for the ft to 
generate a near minimax approximant as usual, the choice of the /* at a different set of points clustered 
in the center of the band is motivated by a different observation: The polynomial interpolant is^most 
reliable in the center of the band because the spectral domain Green's function is singular at DC (/ = 0) 
and at the onset of blazing modes (/ = 1). Notice that both the polynomial approximant and the reduced 
order model match the MoM results well over the entire band. 

Table I contains timing and error results for the graphs plotted in Figure 3. The error values in 
Table I are the mean absolute error at 101 normalized frequency points spaced evenly between .05 and 
.95. The timing columns in the table were produced on a 266 MHz DEC Alpha workstation and can be 
described as follows: The MoM solve time is the number of seconds it takes to calculate the FSS 
reflection coefficient at a single frequency using the spectral Galerkin method. The polynomial 
interpolant setup time is the overhead involved in finding the coefficient matrices A,, of expansion (7), 
and the polynomial interpolant solve time is the time needed to then setup and solve system (9) at a single 
frequency. The reduced order model setup time is the overhead involved in constructing a single column 
of V and Z given the polynomial interpolant, and the reduced order model solve time is the time required 
to calculate the reflection coefficient for a single frequency given the reduced order model. The 
breakeven frequency is the number of frequencies that need to be calculated before the model reduction 
algorithm described here becomes cheaper than a straightforward application of the spectral Galerkin 
method. 
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Because narrow resonances are not uncommon in FSS systems (see Figure 3) the reflection 
coefficient of a given FSS must typically be calculated at one hundred or more frequencies to characterize 
it accurately. Once the breakeven frequency is reached, however, the solution of the reduced order 
system takes less than .1 ms at each frequency. Thus, the model reduction method presented here 
represents a large acceleration of the MoM; it is typically an order of magnitude faster if 200 or more 
frequencies are calculated. 

4. Conclusions 

A method for the fast calculation of the reflection coefficient of multiscreen FSSs over a large 
frequency band has been presented. The method is based on a polynomial interpolation of the system 
generated by the spectral Galerkin method, followed by a model reduction of the resulting system. The 
method is seen to reduce FSS scattering problems involving hundreds or thousands of unknowns to 
problems involving tens of unknowns with fairly minimal overhead. The algorithm was demonstrated 
through its successful application to several scattering problems, and was seen to yield a significant 
speed up relative to the straightforward spectral Galerkin method with very little loss of accuracy. 
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Figure 3. Comparison of MoM, polynomial interpolant and reduced order model solutions for six 
two-screen FSSs composed of the basic shapes shown in Figure 2. The MoM solution is represented by 

a solid line, the polynomial interpolant as small circles, and the reduced order model as a dashed line. 
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Table 1 

Timing and Error Results 
for Rational Interpolant Approximations to Several Different FSS Screens 

Shape MoM 
Solve 

(s/Freq.) 

Poly. Int. 
Setup (s) 

Poly. Int. 
Solve 

(s/Freq.) 

Red. 
Mod. 

(s/Order) 

Red. 
Mod. 

(ms/Freq.) 

Breakeven 
Point 

Error 

a 2.02 30.3 0.779 1.35 0.416 25 0.00422 
b 1.85 29.7 0.579 1.30 0.416 26 0.00145 
c 2.23 29.9 0.994 1.80 0.406 25 0.00238 
d 2.07 30.0 0.842 1.51 0.416 25 0.00257 
e 1.81 29.7 0.522 0.835 0.416 23 0.00338 
f 2.63 29.6 1.42 2.29 0.396 24 0.00227 
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Comparing High Order Vector Basis Functions 
J. Scott Savage 

Ansoft Corporation 
savage @ ansoft.com 

Abstract - The non-uniqueness of higher-order vector basis functions has led to publication of a 

variety of basis functions by many authors. This paper identifies important characteristics of these 

basis functions as applied to finite element analysis and provides for an educated choice of which basis 

functions are best suited for a particular application. This paper will also quantify the benefits of some 

previously published functions. As new sets of basis functions appear in the literature, it is imperative 

that the characteristics of these new functions be discussed, to demonstrate their relative worth. 

I. INTRODUCTION 

Vector basis functions have demonstrated the ability to accurately represent electromagnetic 

fields, via the finite element method, in complicated, inhomogeneous applications. When applied to 

the vector Heimholte equation, the simplest such vector basis functions are often referred to as edge 

elements, or Whitney elements. More recently, as higher-order vector basis functions have become 

popular, these lowest order elements have become known variously as H0(curl) [1,2], constant-tangent 

/ linear-normal (CT/LN) elements [3], zero-order elements [4], and erroneously, first order elements 

[5]. These descriptions were developed to distinguish between the simplest elements, and elements of 

higher-order. This paper will use the notation of [1] and [2], which is compact, distinguishes between 

curl-conforming and divergence-conforming elements, and is consistent with the mathematical 

literature. 

Since simplexes (triangles and tetrahedra) are best suited for modeling arbitrary geometry, this 

paper will focus on vector functions on simplex meshes. The general class of vector basis functions 

for finite element applications has been called tangential vector finite elements as well as curl- 

conforming finite elements. The elements are called "tangential" since they explicitly enforce 

tangential field continuity, while enforcing normal continuity only in a weak sense. The elements are 

called "curl-conforming" since the curl of any basis function is well-defined. This property is a direct 

result of strict tangential continuity. 
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There is no debate in the literature over the best form of the lowest order elements. The 

definitions of Ho(curl) elements duffer only by an arbitrary scaling parameter, usually the length of the 

edge on which the function is defined. These elements are called zero-order, since they are complete 

to polynomial order zero (constant) in both the domain and range space of the curl operator. This 

completeness property is responsible for the convergence rates of these and all higher-order elements. 

Unlike zero-order edge elements, higher-order elements are not uniquely specified. Many 

Hi (curl) functions can be found in the literature [2-7]. These elements have demonstrated appropriate 

convergence rates, yet have very different structure. Additionally, various H2(curl) elements have 

been published [3-7], although the convergence rates of these elements has yet to be demonstrated. 

Two different subcategories of basis functions have emerged in the literature: interpolatory and 

hierarchical. Interpolatory basis functions are vector analogs of the popular scalar basis functions on 

Simplexes [8]. Each function in the basis set is of equal order, and the field interpolates to the value of 

individual functions at discrete mesh locations. Hierarchical basis sets, conversely, include all basis 

functions for every lower order. For example, each Ho(curl) basis function is included in a 

hierarchical Hi(curl) basis set. 

n. COMPARISON CRITERIA 

To evaluate the relative worth of various sets of vector basis functions, a set of criteria for 

comparing the functions is needed. The convergence rate of a basis set under mesh refinement is of 

primary importance. This property alone determines the order of a basis set. A demonstration of the 

convergence rate should always be included in the presentation of new basis sets. Next, the efficiency 

of the basis set is critical. The desired convergence rates should be obtained using the fewest possible 

unknowns. Nedelec has established the minimum number of degrees of freedom per simplex for a 

given convergence rate [1]. 

Beyond these two criteria, there is less certainty of the relative weight which should be given to 

other measures of performance. One important property of basis functions is matrix conditioning. 

When the basis functions are as nearly orthogonal as possible, the condition number of the global 

matrix will be reduced. This property greatly affects the performance of iterative matrix solution 

algorithms. Another important characteristic involves p-refinement, that is, using different order 

approximations-in different cells of the same mesh. Hierarchical basis functions lend themselves well 

to p-refinement; although interpolatory functions do not prohibit p-refinement, they complicate it. 
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m. DESCRIPTION OF VECTOR ELEMENTS 

In this paper, simplex coordinate representations will be used to define vector basis functions. 

This convenient form allows various basis sets to be analyzed using a symbolic element matrix 

generation code developed by the author. With this tool, it is a simple task to evaluate any arbitrary 

basis set which can be written in simplex coordinates. Vector basis functions may be associated with 

several geometrical entities in a mesh of simplexes. The various incarnations of functions results from 

the explicit enforcement of tangential continuity. Vector functions may be associated with edges, 

triangular faces, or tetrahedral cells. When residing on edges, the basis functions are functions of only 

the two simplex coordinates associated with the nodes at the endpoint of the edge. Similarly, face 

functions are written in terms of the three simplex coordinates associated with the vertices of the 

triangle. Tetrahedral, or internal functions include all four simplex coordinate terms. For the purpose 

of analyzing a given order basis set, it is assumed that any edge function exists in identical form on all 

edges of the mesh. Likewise for face and internal functions. Thus, a basis set may be defined by 

listing all the edge functions for one edge, all the face functions for one face, and all the internal 

functions for one tetrahedron. 

IV. QUANTIFYING BASIS SETS 

The interpolatory basis sets proposed in [4], and a new hierarchical basis set, extended from those 

proposed in [9], were both analyzed using the symbolic matrix generation code. These elements are 

defined in Table 1 and Table 2, respectively. Due to the non-uniqueness of vector basis functions, 

alternative hierarchical Hi(curl) basis functions exist [7,10]. The hierarchical basis functions in Table 

2 were chosen since they directly exhibit the proper contributions to the range and null space of the 

curl operator. 

To determine convergence rates, a cavity resonator problem was simulated. The resonant 

frequencies were predicted using a restarted Lanczos algorithm that fully exploits the sparsity of the 

eigenvalue equation. As expected, equivalent order basis sets give identical resonant frequency 

predictions. This is true since interpolatory basis functions and hierarchical basis functions of equal 

order span exactly the same space. Fig. 1 demonstrates convergence rates for the dominant mode of a 

2-D square resonator up to Hs(curl). Fig. 2 illustrates convergence rates for the dominant mode of a 

3-D cubic resonator up to Hö(curl). The eigenvalue predictions using Hp(curl) elements for both 2-D 

and 3-D cavity problems, behave as O(ä
2(P+1)

). Since the answers for each basis set are identical, and 
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they each use the minimal number of unknowns prescribed by Nedelec, the only distinguishing 

quantitative feature is matrix conditioning. Iterative matrix solvers perform best when the condition 

number of the matrix is low. To reduce the global matrix condition number, the basis functions should 

overlap as little as possible. One indicator of basis function conditioning relates to the element matrix, 

T9'=HJBrBjdV. (1) 
tet 

where B, represents the i-th basis function. This element matrix depends on the shape of the 

tetrahedron over which the integration is performed. Since most mesh generation packages strive to 

produce well-shaped cells, an equilateral triangle and equilateral tetrahedron were used to check the 

conditioning of various 2-D and 3-D basis sets, respectively. 

When the basis functions are scaled so that the element matrix, T", has uniform diagonal entries, 

the condition number, cond(T'), is a good indicator of the conditioning of the basis set. The condition 

number used in this paper is the ratio of the largest eigenvalue to the smallest eigenvalue. Table 3 and 

Table 4 give the condition numbers for 2-D and 3-D basis sets, respectively. It is apparent that 

interpolatory vector basis functions are much better conditioned than hierarchical vector basis 

functions, especially for high-order basis sets. This property should make interpolatory basis 

functions more desirable when implemented with an iterative matrix solver. 

V. CONCLUSION 

Higher-order vector basis functions provide more efficient solutions to Maxwell's equations 

when high accuracy is desired. Although the vector finite element space for higher-order basis sets 

has been well defined, the exact form of a particular vector basis set is not unique. This provides the 

finite element developer freedom in choosing a basis set. To assist in making this choice, this paper 

has provided a set of criteria for measuring the relative worth of vector basis functions. It was 

demonstrated that the two most popular vector basis types, interpolatory and hierarchical functions, 

correctly model Nedelec's finite element spaces with the minimal required degrees of freedom. 

Furthermore, it was proven that interpolatory vector basis functions are better conditioned than 

hierarchical vector basis functions. 
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Table 1. 
Interpolatory Vector Basis Functions 

Order Edge Functions Face Functions Tetrahedron Functions 
Ho(curl) 4V4 - 4V4 = Q]2 

H,(curl) (3^-1X2,2 
(3^-1X2,2 

4^23 
4Q,3 

H2(curl) (4A,-lX4A,-2X2,2 

(4A,-2X4^-2X212 

(4^-1X4^-1X2,, 

/l,(4A, -lX223, 4(4^ -1)Q,3 

4(44-1X223^(44-1X2,3 
4(44-1X2,3,4(44-1X2,3 

44^34 
44ß,4 
4^4^2,2 

H3(curl) (5^-1X5^,-2X5^-3X2,2 
(5^-1X5^,-2X5^-1X2,2 
(54-1X5^-1X5^-2X2,2 
(5^-1X5^-2X5^-3X2,2 

4(54-lX54-2X223 

4(54-1X54-1X223 
4(54-1X54-1X223 
4(54-iX54-2X223 

4(54-1x54-1x2,3 

4(54-1x54-2x223 
4(54-1x54-2x2,3 
4(54-1x54-1x2,3 
4(54-1x54-1x2,3 
4(54-1x54-2x2,3 
4(54-1x54-1x2,3 
4(54-1x54-2x2,3 

44(54-1X234 
44(54-lX234 

44(54-1X234 
44(54-1X234 
44(54-lX2,4 

44(54-lX2,4 

44(54-lX2,4 

44(54-1X2,4 
44(54-1X2,2 
44(54-lX2,2 

44(54-lX2,2 

44(54-1X2,2 
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Table 2. 
Hierarchical Vector Basis Functions 

Order Edge Functions Face Functions Tetrahedron Functions 
Ho(curl) AlVA2-A2VA1=Qi2 

H,(curl) 
additional 

V&AJ 4ß23 
^Q13 

H2(curl) 
additional 

V^ft-^J K ^23' ^2^13 > ^^12 

^2^3^14 

H3(curl) 
additional 

7^(2^,-^X^-2^)] 4^23 • 4^13 ■ 4)^12 • 

^Aj/^Q^, A1A2A4ß23 

A,A3A4ß12, /t1A3ß24 

/l^Ajß^, Aj/l3ßi4 

Table 3.                                                                  I 
Element Matrix Condition Numbers for 2-D Basis Functions 

Basis Functions Interpolatory Hierarchical 
Ho(curl) 2.00 2.00 
Hi (curl) 10.53 65.85 
H2(curl) 47.54 750.60 
H3(curl) 262.37 31635.95 
H4(curl) 1229.60 268730.88 

Table 4. 
Element Matrix Condition Numbers for 3-D Basis Functions 

Basis Functions Interpolatory Hierarchical 
Ho(curl) 2.50 2.50 
Hi(curl) 25.28 141.50 
H2(curl) 237.79 2714.99 
H3(curl) 2008.06 189517.27 
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Abstract - Techniques are presented to improve the efficiency and accuracy of the hybrid 
finite element method when applied to printed circuit antennas and arrays. To improve 
efficiency, we use a prismatic meshing approach that dramatically reduces the number of finite 
elements required for analyzing thin planar structures as compared to the tetrahedral alternative. 
For accuracy improvements, we demonstrate how resonant frequencies of narrow band printed 
antennas can be predicted with much greater accuracy and confidence given a suitable mesh 
refinement scheme. 

I. Introduction 

Full wave techniques have been employed for the electromagnetic analysis of antennas and 
microwave circuits for years [1,2], yet no single approach is known to meet every real-world 
engineering design need. One major difficulty is the tradeoff between efficiency and generality 
that must be made when selecting a numerical approach. Moment method approaches generally 
offer excellent efficiency, but can only handle structure types that can be characterized with 
Green's functions. Finite element methods offer the most generality, but can be very inefficient 
when used to analyze open structures. 

Few engineering problems face this dilemma more profoundly than the case of printed 
circuit antennas and arrays. Here, moment method approaches seem more suitable, but the 
complex feed structures and multi-layer substrate/superstrate combinations commonly used rule 
out a Green's function approach. Finite element methods, which can address feed structure 
complexities and substrate inhomogeneity, are poorly suited to efficiently handle the radiation 
aspect of the problem. 

In this work we employ a 3-D hybrid finite element method (FEM) and boundary element 
method (BEM) take advantage of both MoM and FEM approaches. The hybrid FEM/BEM 
approach alone, however, does not guarantee adequate speed, efficiency and accuracy. Here we 
present specific mesh generation, element, and refinement schemes that make possible fast and 
accurate analyses using a personal computer. 

II. Hybrid FEM with 3-D Prismatic Mesh Elements 

A goal of our approach is to analyze arbitrary patch shapes for planar antennas in a 
comparatively general and efficient manner. Since we are dealing with planar layered substrates, 
2-D triangulation meshing can be utilized to account for non-rectangular patch shapes. A uniform 
discretization in the third dimension (extrusion along the z axis) takes into account layered 
substrate-configurations. The resulting right-angled prism mesh elements allow for general 

' This work was supported by the US Army Research Office, Research Triangle Park, North Carolina, under 
contract DAAH04-96-C-0O49. 

750 



inhomogeneous, lossy and anisotropic material fillings, and printed and non-printed feed line 
modeling. Prismatic meshing results in a tremendous reduction in the number of finite elements 
required compared to a tetrahedral meshing approach, especially for thin substrates. In the patch 
antenna examples presented here, prismatic meshing results in 500-2,000 unknowns, while a 
comparable tetrahedral approach would need 10,000-100,000 unknowns to match the system 
condition. 

As is conventional with hybrid approaches, our FEM subsystem handles the truncated 
domain of layered substrates including non-printed feed structures. The FEM analysis is 
performed over a restricted portion of the substrate within a fictional perfect electric conductor 
wall (referred to as the cavity). When placed certain distance from the antenna the cavity walls 
have a negligible effect. The BEM subsystem handles the antenna radiating elements with 
possible printed feed lines. We solve the coupled FEM/BEM system using a BiCG iterative 
solver. For printed antenna modeling, simple diagonal preconditioning appears sufficient to 
achieve efficient convergence. 

III. Mesh Generation for Efficient Antenna Analysis 

Our approach of extruding 3-D meshes from 2-D triangulation was designed specifically for 
printed circuit antennas and other multi-layer planar structures. Given a layer based design, 
meshing proceeds in two phases. First, a list of line segments defining the geometry is extracted 
from the user prescribed physical layout. Second, the extracted 2-D geometric input is 
triangulated using an algorithm which respects the input geometry (points and line segments). 

The 2-D triangulation code uses the standard Bowyer-Watson point insertion method (with 
implementation along the lines of that found in [3]). Edge-swapping and node relocation 
smoothing algorithms, similar to those described in [4,5], are included as options. The 
triangulation code was developed with adaptive mesh refinement in mind; hence it initially 
computes the coarsest mesh consistent with the geometric input (the locations of line segments) 
and with an overall triangle quality measure. In general, highly graded triangular meshes are 
produced with a minimum angle between 30 and 35 degrees. The resulting 2-D triangulation is 
extruded to the 3-D prismatic mesh as a preprocessing step for the hybrid FEM/BEM engine 
taking into account substrate material properties. This step is independent of the 2-D mesh code. 

As a demonstration of modeling efficiency, we present in Figure 1 the radiation pattern 
analysis results of a linear patch antenna array with 8 radiating elements. By using the prismatic 
elements, accurate radiation pattern (far-field) results can be obtained with very efficient 
sampling of the structure. These calculations took only a few minutes using a Pentium PC 
(266MHz/64MB). Figure 1(a) shows the linear 8 element array, the antenna feed points, and the 
outer cavity wall. Figure 1(b) shows the resulting mesh (smoothing was not used in this case). 
Figure 1(c) shows the predicted radiation pattern of the array using uniform feeding. The 
corresponding array factor calculation is plotted for comparison. Evident from the comparison, 
little coupling was present in this example. 

IV. Mesh Refinement for Improved Accuracy 

An often overlooked difficulty associated with full-wave approaches applied to narrow band 
patch antennas is the accurate prediction of resonant frequencies. Errors on the order of 5-10% 
are common even when following the widely suggested sampling rules (20 samples/wavelength 
for near fields). This problem is not solved in practice by simply refining the overall mesh. This 
does help approach the exact solution, but rapidly increases the size of the numerical system. We 
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have observed that the rate of convergence to an exact solution is usually relatively slow 
compared to the increase in system size. 

Because of our ability to handle unstructured meshes, we explored a local mesh refinement 
scheme to overcome this dilemma. An example of our triangulation code applied to a simple 
antenna problem is shown in Figure 2. Here we consider a rectangular patch 11.43 x 7.62 cm 
housed in a 19.43 x 15.62 cm cavity. The substrate (£r =2.62) is 0.15875 cm thick. Note that the 
ratio of the cavity's length to its depth is over 122, making it impractical to use a tetrahedral 
FEM approach. On the left is the coarsest mesh consistent with the location of the contour of the 
antenna layout; on the right a locally refined mesh has been produced where the areas close to 
the patch's longer edges have been refined by the introduction of two artificial lines. Here we 
have localized the mesh at the two resonant patch edges to improve the modeling of antenna edge 
effects and electrical length. 

As seen in Figure 3, this localized refinement at the patch edges dramatically reduces 
errors. Accuracy near 1% is obtained by sampling near 50 elements/wavelength. Since the mesh 
refinement is localized, the increase in size of the numerical system via this refinement is 
minimal. We have applied a similar edge refinement approach to circular patch antennas and 
achieved quite consistent results. 

As a demonstration, Figure 4 shows the input impedance loci of the rectangular patch 
antenna at three different feed locations. Figure 5 shows results using mesh refinement, 
compared with measured data. The analysis time is on the order of a minute/frequency on a 
266MHz/64MB Pentium PC. 

V. Conclusions 

We have presented a hybrid FEM/BEM technique using right-angle prism meshing in 
conjunction with refinement schemes for efficient and accurate printed antenna modeling. As has 
been demonstrated, accuracy within 1% can be obtained in predicting patch antenna resonant 
frequency with minimal increases in computational complexity. We are currently working on 
automatic refinement schemes and suitable error estimation methods to automate our mesh 
refinement approach. 
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Figure 1. Layout (a), meshing (b), and radiation patterns (c) of a linear 8-element patch antenna 
array. Full wave and array factor based calculations are shown for comparison. 
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Figure 2. Mesh examples for rectangular patch antennas. On the left is the coarsest mesh 
consistent with the location of the antenna contour; on the right is the mesh with an artificially 
introduced lines along the patch's edges. 
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Figure 3. Effect of refinement on resonant frequency relative error. 
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Feed_P2 
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Figure 4. Input impedance loci of a rectangular patch antenna at difference feed locations: 
3.05, 2.29 and 0.76 cm from the patch edge, respectively. 

- Calculated 
Measured 

Figure 5. Comparison of analysis and measurement [6,7] results for the rectangular patch. 
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Abstract 
An efficient finite element method (FEM) algorithm to compute scattering from a complex body 

of revolution (BOR) is developed. The method uses edge-based (vector) basis functions to expand 
the transverse field components and node-based functions to expand the E$ field components. The 
use of vector basis functions eliminates the problem of spurious solutions suffered by other three 
component FEM formulations. Perfectly matched layer (PML) absorbers in cylindrical coordinates 
are used to truncate the mesh. Because PML absorbers are available in cylindrical coordinates, the 
method is efficient for arbitrarily shaped scatterers. The FEM equations are solved by ordering the 
unknowns with a reverse Cuthill-McKee algorithm and applying a banded-matrix solution algorithm. 
The method is capable of handling large radar targets, and good agreement with measured results is 
achieved for benchmark targets. 

1 Introduction 

Recent extensions of perfectly matched layer (PML) absorbers to cylindrical coordinates [1-3] make 
possible the development of an efficient finite element method (FEM) algorithm for scattering from a 
complex body of revolution (BOR). Past FEM algorithms for scattering from a BOR have employed 
either a coupled azimuth potential formulation [4-6] or a three-component, node-based formulation [7]. 
In contrast, this work uses edge-based (vector) basis functions to expand the transverse field components 
(Ep and Ez) and node-based functions to expand the E<j, field components. Such an arrangement avoids 
the problem of spurious modes suffered by the three-component, node-based formulation [7], and, in 
contrast to the coupled azimuth potential formulation, the unknowns in this arrangement obey the 
standard vector wave equation, making the application of PML absorbers much simpler. Because PML 
absorbers are now available in cylindrical coordinates, the method is also very efficient for long, narrow 
scatterers, which require many extra unknowns if the mesh must be truncated by a spherical absorbing 
boundary condition. 

2 Formulation 

The formulation starts with the illumination of an axisymmetric target by a uniform plane wave. A slice 
of a typical computational domain is depicted in Figure 1. The electric field in this problem obeys the 
three-dimensional (3-D) vector wave equation with the boundary conditions 

n x E = 0    on    5i (1) 

—ii x (V x E) + 7en x n x E = 0    on    52 (2) 
Mr 
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Figure 1: Slice of a typical target. 

where Si + 52 makes up the surface of an impenetrable scatterer. To solve this problem using FEM, 
the mesh must be truncated at an artificial boundary. To avoid introducing spurious reflected waves 
from this artificial boundary, PML is introduced as shown in Figure 1. The constitutive parameters of 
medium with the PML are [2] 

where A is a diagonal tensor given by 

with entries 

which 

1 

A = ppAp + (jxpA,), + zzAz 

SzP.      . SzSpp        _ Spp 

P Szp 

0<P<Prr. 

^ = ^) = <jWa(^)2     p>pm 

Sz = Sz(z) = • 

Zml 

zml < 2 < zrr 
. (z-zmuy 

l-]u\— )      Z>Zmu 

0<p<p„ 
p = < 

3« 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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With these constitutive parameters, the wave vector equation is 

V x — T1 • V x E - khrA • E = 0 (9) 

where fco = u)y/p,0€o is the free space wave number. 
According the generalized variational principle, the problem defined by Equations 9, 1, and 2 can be 

found by extremizing the functional [8] 

F(E) = i HI f—(V x E) -Tl ■ (V x E) - fcfo-E -Ä-EI dV + \ Iff, [E ■ E - (ft- E)(n • E)]dS. 
2jn ifir J       tu (10) 

This functional is converted to F(ES) by substituting E = E! + Es and discarding terms which do not 
depend on Es, 

F(ES) =- HI [—(V x Es) • T1 ■ (V x E') - klerE
s • A ■ Esl dV 

v 

+ 1 ff-r* [Es • Es - (ft • Es)(ft • Es)] dS + ff 7e [Es • E*' - (ft • E')(ft • E')] dS 
s2 s2 

+ HI [—(V x Es) • F1 ■ (V x E') - fcg<=rE* • A ■ E'] dV - ff Es ■ {n xV x &)dS. 
V" 

To take advantage of the azimuthal symmetry of the problem, both the incident and the scattered fields 
are expanded in Fourier modes 

E =   f;    \Ettm(p,z) + 4>Et,m(p,z)]eim* (12) 
m=—oo L 

and the <fi integration is carried out, yielding a functional which can be extremized in two dimensions, 

F(E') =2n   £   ji || | A [ £(V, x E?,_J ■ (V, x E?,J + (V,£$,_ra + ^E?,_m + ^},_J 

■ X«'-1 ■ (V4E;m - ^Ef,m + JBJ,m)] - *g«rp[E?,_ra • A, • Bf,m + A^,_mi^m] jdfi 

+ j 17.P [E?,-„ • E?,m - (ft • E{,_J (ft ■ E?,J + £$,_m^,m] <« 
c2 

+ || {^ [(Vt x E?,_J - 4> x (V,E{,_m + ^E*_m + ^,_j] • r1 • (V x E^) 

- kl*Tp [E?,_TO ■ % ■ E{m + A^j,_m4,m] Un 

+ 17eP [E?,_m • Ej,m - (Ä • El_m) (ft • E'.J + B},_m4lB,] <« 

- I A [E?,_m + *ü$,_ra] • [ft x (V x Et)] A} (13) 
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where 

Ä( = pph.„ + zzA*;  Ä"t = ppKz + zzAp. (14) 

To extremize Equation 13 (subject to Equation 1), FEM expansions are substituted for Efm and 
Eim. The FEM expansions depend on the mode number m because the conditions that the fields must 
satisfy along the z-axis depend m. Along the z-axis, the boundary conditions are 

B, = ^=(VxE)p = (VxE)^ = 0 form = 0; (15) 

E„ = &E*,   (VxE)p = Ti(VxE)^,   £2 = (VxE)z = 0   for m = ±1; (16) 

£, = J^ = .E,= (VxE)p=(VxE)# = (VxE)j!=0 for \m\ > 1. (17) 

FEM expansions which satisfy these conditions are [9] 

t=l i=l 
3 3 

^,±1 = E e%{Nt,    E,,±1 = £ [ =F ipej,^ + <£/>Nf] 

3 3 

E*,m = E «5^'. E'.™ = E ^N" 

for m = 0; (18) 

for m = ±1; (19) 

for \m\ > 1 (20) 

where Nf is a standard 2-D nodal-element basis function, and Nf is a standard 2D edge-element basis 
function. Substituting Equation 18, 19, or 20 into Equation 13, differentiating, setting the result to zero, 
and taking advantage of symmetry between the m and -m terms yields a system of the form 

Am      A; 

»      Arr A4>t     H* 

t4> '1_ Jsrl (21) 

Note that the system matrix is sparse and symmetric. Also note that, although the summation in 
Equation 13 is over all positive and negative numbered modes, it can be shown that 

,„      fK"}       V-pol incidence f-{e^m}   V-pol incidence 

V* '     \-{et-
m}    H-pol incidence '   * * *     \{ejm}      H-pol incidence 

for all m. Use of this relation decreases the computational work by half. A rule of thumb for the number 
of modes required for a convergent solution is [10] Mmax = fc0/>maxsin 9 + 6. This rule of thumb is valid 
for &opmaxsin0 > 3. 

When the unknowns in Equation 21 are appropriately ordered, the system matrix is highly banded. 
Thus, to solve Equation 21, the unknowns are first ordered in a reverse Cuthill-McKee ordering [11]. The 
LDLT decomposition of the matrix is then computed using a band solver [8]. The solution is finally found 
by forward and back substitution on the resulting triangular systems. Using this method, the solution 
for multiple excitation vectors is computed while the LDLT decomposition of the matrix is computed 
only once. 

759 



Materials 

T 10 
V) 

CD 

I o 
o 
DC 
s -10 
to 
m-20 

— VV-pol 
--HH-pol Core: PEC (r=0.5X) 

Layerl: £r=2.0,Hr=1.0(ij=0.5lX) 

Layer2: E,=2.0-j2.Q, JIF2.0-J2.0 

(r2=0.52A.) 

Uyer3: E,=2.0,y.r=2.0 (TfQ.53X) 
■--■<■■ c.:>' 

30       60       90      120      150     18 
6 (degrees) 

(a) Geometry (b) Computed RCS 

Figure 2: Computed bistatic RCS of a coated sphere. Compare to results in [7]. 
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Figure 3: Computed monostatic RCS of a coated sphere. Compare to measured results in [12]. 

3    Numerical Examples 

Three examples of computations by this method are presented here. In each of the examples, the mesh 
is truncated by a five layer PML with a = 5.0. The PML interface is place approximately 0.25 A from 
the surface of the scatterer, and unless otherwise noted, the mesh length is A/20. 

The geometry for the first example is the coated sphere shown in Figure 3. This example is considered 
in [7] as well. The bistatic radar cross-section (RCS) of the sphere is shown in Figure 3, and agrees well 
with the both the FEM result and the method of moments (MoM) comparison result presented in [7]. 
However, the authors of [7] point out that their FEM code does not treat magnetic materials properly, 
and although their FEM result agrees well with their MoM comparison result, inaccurate results can 
arise from magnetic materials. The use of edge elements in the current method eliminates this source of 
potential inaccuracy. 

The next example considers the metallic ogive shown in Figure 3. This is one of the benchmark 
targets presented in [12]. At 9 GHz, the ogive is 7.63A long, and its computed monostatic RCS is shown 
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Figure 4: Computed monostatic RCS of a conesphere with a gap. Compare to measured results in [12]. 

at this frequency. Measured results are presented in [12]. Good agreement is observed between the 
computed results presented here and the measured results presented in [12]. 

The final example is a metallic conesphere with a gap, shown in Figure 3. This target is also one of 
the benchmark targets in [12], and it is 20.69A long at 9 GHz. The computed monostatic RCS at this 
frequency is shown in Figure 3, and measured results are found in [12]. In computing this result, parts of 
the mesh between the conesphere and the PML are coarsened to mesh length A/10 rather than A/20, and 
there is still good agreement between the computed results and the measured results in [12]. Further, 
because the conesphere is over 20 wavelengths long at 9 GHz, this example also shows that the method 
is capable of handling large radar targets. 

4    Conclusion 

A novel, efficient algorithm to compute scattering from a complex BOR using vector FEM and PML is 
developed. Recent extensions of PML to cylindrical coordinates allow for efficient and accurate mesh trun- 
cation. Importantly, the mesh is truncated on a cylindrical boundary rather than a spherical boundary. 
This is much more efficient for long, narrow scatterers. Further, the use of the electric field components 
as the unknown values allows simple implementation of the PML. The use of edge elements in the for- 
mulation prevents spurious solutions and allows inhomogeneity in both permittivity and permeability. 
The highly sparse FEM matrix is efficiently solved using banded matrix techniques. Results from the 
method agree well with previous results and with measurements. 
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Abstract— A cavity-backed microwave antenna with over one hundred small cylindrical coupling holes is ana- 
lyzed using a homogenized finite element model. The homogenized model has a single dielectric—filled slot in place 
of the many coupling holes, thereby greatly reducing the time needed to compute the radiation pattern. The homog- 
enized model of a 9 GHz rectangular beam waveguide resonator antenna is derived to produce the same transmis- 
sion coefficient as do the small coupling holes. The computed radiation pattern is shown to agree well with the 
measured pattern. 

INTRODUCTION 

Metal boxes with large numbers of holes are commonly used to enclose electrical and electronics devices. The 
holes are often essential to allow thermal ventilation, and they also reduce overall weight. However, the holes allow 
electromagnetic radiation to escape, which may produce undesirable electromagnetic interference (EMI). 

Holes in metallic walls are also used in some antennas, where they produce desired electromagnetic radiation. 
Holes are especially useful in cavity—backed antennas, because the hole size can be readily altered to adjust the 
coupling of electromagnetic energy from inside the cavity to outside radiation. 

Modeling enclosures and antennas with many holes can be very difficult, because each hole usually must be mod- 
eled in detail. For example, if the finite element method is used, at least 20 or 30 finite elements are typically re- 
quired to model each hole, so complete finite element models will often require tens of thousands of 3D finite ele- 
ments. The computer time required for such large models may be prohibitive, especially if many design iterations 
are to be analyzed. 

A technique called homogenization can be helpful in reducing model sizes and attendant computer times. The 
term has been used in computational modeling to signify methods of replacing detailed inhomogeneities with a 
single homogeneous equivalent [l]-[4]. 

This paper applies homogenization to finite element analysis of a beam waveguide resonator antenna with a 
multitude of coupling holes [5]. This cavity-backed antenna is analyzed here for the first time using the finite ele- 
ment method. The computed radiation pattern is compared with measurements for several different sizes of cou- 
pling holes. 

RECTANGULAR BEAM WAVEGUIDE RESONATOR AND ITS 
RESONANT FREQUENCIES 

Beam waveguide is a type of quasi-optical transmission line that dates from 1961 [6]. Nowadays it is used for 
feeding large reflector antennas [7], [8] and sometimes for other purposes [9], [10]. 

A resonator can be created by placing conductive metal walls in a beam waveguide at phase fronts spaced by 
180 electrical degrees [5],[11]. One of the phase fronts can be chosen to be a plane, but then the other phase front 
must be nonplanar. Fig. la shows the metal wall shapes for a rectangular beam waveguide resonator designed and 
built [5] to have its fundamental resonant frequency near 9.0 GHz. Fig. la shows only the right half; the other half 
is symmetrical about the y axis. The 2D quadrilateral finite elements used in Fig. lb to model the resonator are 
of thickness equal to its actual height of 19 mm in the z direction. The resonant fields are invariant with z. The 
actual experimental resonator contains four metal walls: the two phase front walls at y=0 and variable y shown 
in Fig. la, and two planar walls at z = 0 and z = 19 mm. The two cavity resonator ends, at x = +381 (in Fig. la) 
and -381 mm, can be left open because the electromagnetic fields near them are negligibly small [5]. 
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a) yl 
y= 16.764/(1+1.15E-6X2) (381,14.366) 

(0,16.764) : :  

(0,0) 

b) 

Fig. 1. Right half of beam waveguide resonator, 
a) Dimensions in mm, b) Finite element model with computed E for fundamental eigenrnode. 

The resonant frequencies of the finite element model of Fig. lb can be computed in two ways. Previously [12] 
they were computed by introducing an AC exciting current at certain elements or nodes, sweeping the excitation 
frequency, and noting the frequencies at which large (and equal) magnetic field and electric field energies occur. 
Instead, in this paper a real eigenvalue solution is used, which does not require any excitation. The eigenvalues 
(resonant frequencies) and eigenfunction (modes) are computed here using Ansoft's MicroWaveLab™ finite ele- 
ment software [13]. It extracts real eigenvalues using the Lanczos method with Sturm sequencing, which theoreti- 
cally will always find all modes occurring over a user-selected frequency range [13]. 

Fig. lb shows the computed electric field distribution for the fundamental mode of the model of Fig. la. The 
computed resonant frequency is 9.0838 GHz, which agrees closely with the 9.09 GHz computed previously [13] and 
reasonably well with the measured 8.975 GHz. The mode shape in Fig. lb appears to follow the theoretical Gaus- 
sian distribution. Other modes have shapes that are Hermite polynomials times the Gaussian distribution. Because 
of the small 19 mm height in the z direction, the fundamental and first dozen or more higher order modes are all 
invariant in the z direction. The fundamental and several other modes were measured previously [5] using a coaxial 
probe excitation with the probe pointing in the -z direction and located at x =0 and y = 8.4 mm. 

A study was next made of the effect of model size in the x direction on the computed resonant frequencies, be- 
cause the 3D antenna model to be developed should be as small as possible. It was found that reducing the x dimen- 
sion to 190.5 mm by removing one half of the finite elements from Fig. la causes only small changes in the resonant 
frequencies. The fundamental frequency shifted less than one part per million, and even the frequency of the fifth 
mode only changed by less than 0.2%. Thus all succeeding models in this paper will have finite elements extending 
only to x = 190.5 mm. 

RECTANGULAR BEAM WAVEGUIDE RESONATOR ANTENNA 

The cavity resonator of Fig. 1 can be converted into a cavity-backed antenna if proper coupling to free space 
can be introduced. The chosen coupling method must be manufacturable and must produce the proper coupling 
coefficient. The coefficient must be small enough that the resonant modes are not perturbed significantly, yet large 
enough that the antenna has a low reflection coefficient and high gain. Previously [5],[14], a single line of coupling 
holes along the x axis of Fig. 1 was the design chosen. 

Three different sets of coupling holes have been previously fabricated [5],[14]. Their diameters and center- 
to-cent er spacings are listed in Table 1. Note that over the entire x axis of Fig. 1 of length 762 mm, all three cases 
of Table 1 contain well over one hundred holes. 

Table 1. Coupling hole configurations, with dimensions in millimeters 

Case 
A 
B 
C 

Radiation patterns have been previously measured [5],[14] for all three cases of coupling holes. They have been 
measured both for the fundamental mode of Fig. lb, as well as for the mode just above it Both modes have very 
low sidelobes and can be used together for monopulse radar and tracking [14]. This paper, however, will compute 
the radiation pattern only for the fundamental mode. 
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Diameter Spacing Number of holes 
2.54 3.175 240 
3.81 4.445 171 
4.44 5.08 150 



TRANSMISSION COEFFICIENT OF TWO COUPLING HOLES 

Fig. 2 shows views oftwoholesof Case C in Table 1. A one -half solid model has been made, including the actual 
coupling wall thickness of 0.64 mm. On both sides of the holes are conventional rectangular waveguides of length 
10 mm and height 9.5 mm, which is half the actual height of 19 mm, and thus symmetry requires the use of a magnetic 
wall boundary condition. The width of the waveguide cross section in Fig. 2 is approximately twice the hole spacing, 
or 10.2 mm. Because 20.4 mm achieves TE10 mode propagation in the region of 9 GHz, symmetry is again imposed 
through another magnetic wall boundary condition. In other words, only one quarter of the waveguide cross section 
is modeled. 

r 
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Fig. 2. Views of geometry of waveguides with two holes filled with air, of dimensions of Case C of Table 1. 

Fig. 3 shows the finite element model developed for Fig. 2. It consists of 24,545 tetrahedral HI -curl edge finite 

Fig. 3. Finite element model of holes of Fig. 2. 
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elements and 160,800 edge degrees of freedom. While the model in Figs. 2 and 3 has been made with Ansoft's Mi- 
croWaveLab™ software [13], Ansoft's High Frequency Structure Simulator [15] could have been used instead. 
For port 1 excited with a TE10 mode at 9 GHz, the computed transmission coefficient S21 is -34.28 dB. The com- 
putation on an HP 735/125 workstation required 60 Mb memory, 2.8 Gb disk, and 20,270 CPU seconds. 

TRANSMISSION COEFFICIENT OF HOMOGENEOUS DIELECTRIC SLOT 
To develop a homogenized model, the holes of Figs. 2 and 3 must be replaced by a much simpler aperture. Here 

the simpler aperture is a slot of uniform width that replaces the holes along the entire x axis of the wall. Such a 
slot must produce the same -34 dB transmission coefficient as do the holes. The slot width should be fairly large 
so that the finite elements needed to model it are of reasonably large size and thus produce a small number of finite 
elements in the required two models (the detailed model and the final overall homogenized model). Therefore 
it was decided to fill the entire slot with a dielectric material of constant lossless permittivity. By adjusting the per- 
mittivity, the transmission coefficient can be adjusted to match the computed S21 of holes of various sizes such as 
in Table 1. 

The slot width chosen is 4 mm, which for the symmetric model of Figs. 2 and 3 is 2 mm. Fig. 4 shows the finite 
element model developed for the slot aperture in the same waveguide as used in Figs. 2 and 3. It consists of 200 
HI—curl hexahedrons, which have been biased to be smaller near the slot aperture. 

Fig. 4. Finite element model of waveguides with a dielectric-filled slot that replaces the holes of 
Figs. 2 and 3. 

The relative permittivity of the slot in Fig. 4, which has width 2 mm and thickness 0.64 mm (the same as the metal 
wall) was varied and the resulting transmission coefficient was computed using Ansoft's MicroWaveLab software. 
Table 2 lists the magnitude of S21 computed for a range of relative permittivities Er. Note that er = 80 obtains the 
desired -34 dB needed to match the S21 computed for the holes of Case C. The computer time is 93 seconds per 

Table 2. Computed Transmission Coefficient vs. Relative Permittivity of Slot in Fig. 4 

Permittivity e.    S21 fdB) 
10 
40 
80 

-20.0 
-25.3 
-34.0 
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HOMOGENIZED FINITE ELEMENT MODEL OF ANTENNA 

Using the 2 mm slot of Fig. 4, a homogenized 3D model can now be developed for the actual entire rectangular 
beam waveguide resonator and antenna. Fig. 5 shows a detail of the solid model developed, which represents one 
quarter of the overall resonator and antenna. The 2 mm by 0.64 mm slot aperture can be seen in the planar wall 
of the cavity. 

Extending 3 mm above the cavity is one—half of a square model of the coaxial cable feed structure. It approxi- 
mates the actual cylindrical coax feed [14], which has an outer diameter of approximately 3.2 mm and an inner diam- 
eter of approximately 0.7 mm. Here the square coax has an outer width of 3.33 mm and an inner width of 1.11 mm, 
and is assumed filled with air. The top end of the square coax in Fig. 5 is assumed to be the excited port and only 
port in the quarter model. 

The quarter model of Fig. 5 cannot be used to accurately compute the reflection coefficient Sll seen by the 
coaxial feed. The main reason is that the actual experimental resonator antenna has only one coaxial feed on its 
top, and none through its bottom. Thus a half model would be required to compute Sll accurately. A smaller 
source of error in Sll computations is making the coax square. The model of Fig. 5 is suitable, however, for comput- 
ing the radiation pattern. 

Also visible in Fig. 5 is a small amount of air outside the slot. The outer air is 3 mm thick and allows radiation 
to escape through the slot. 

k 

Fig. 5. Detail of solid model of one quarter of the rectangular beam waveguide resonator antenna, 
showing the x=0 plane through the coax feed and the homogenized dielectric-filled slot. 

Fig. 6 shows the finite element model developed for Fig. 5. Fig. 6a is a detailed view similar to Fig. 5, and Fig. 
6b is an overall view of the entire model. Because of the assumed square coax, the model of Fig. 6 can consist entire- 
ly of hexahedrons. There are 860 Hl-curl hexahedrons and 4,224 edge degrees of freedom. 

In addition to these finite elements visible in Fig. 6, three layers of PMA (perfectly matched absorber) finite 
elements are internally generated by Ansoft's Micro WaveLab software to absorb the radiation emitted by the an- 
tenna [16]. Based on the electromagnetic fields at the interface of the visible and PMA elements, the radiation 
pattern is computed. 
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Fig. 6. Finite element model of the homogenized resonator and antenna. The cavity, slot, and 
air in front of the slot are shown in three different shadings. All finite elements are made of air, 

except for the slot elements which are given a high permittivity. 
a) Detail in the region of Fig. 5.   b) View of entire model. 
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RADIATION PATTERNS OF ANTENNA WITH VARIOUS COUPLING HOLES 

Fig. 7 compares computed and measured [14] radiation patterns of the rectangular beam waveguide resonator 
and antenna. Measurements are shown for all three different cases of coupling holes specified in Table 1. The 
measured patterns are expected to be accurate only down to about 25 or 30 dB below the peak, due to the incom- 
plete placement of absorptive material in the measurement chamber [14]. All computations are at the fundamental 
resonant frequency of Fig. 1, which is 9.0838 GHz. 

Note that the computed pattern with relative slot permittivity equal to 80 agrees well with the measured pattern 
for Case C, thereby confirming the validity of the homogenized finite element model that used the S21 computed 
for Figs. 3 and 4. Also, the computed pattern for slot relative permittivity lowered to 40 shows further broadening 
of the beam, which is expected based on the measurements. 

The computed pattern for relative permittivity equal to 120 agrees well with measured patterns for the smaller 
coupling holes of Cases A and B. It also agrees well with the theoretical pattern for very small coupling, which has 
been derived [5], [14] using the unperturbed field of the fundamental cavity mode. 

u 
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Fig. 7. Radiation patterns of rectangular beam waveguide resonator antenna, denoted by letters: 
Measured cases A, B, and C. 

D-computed for er=120, E-computed for E,=80, F-computed for er=40. 
T-theoretical pattern for pure unperturbed cavity mode. 
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CONCLUSION 

More than one hundred small coupling holes in an experimental cavity-backed antenna have been replaced 
by a homogeneous dielectric-filled slot in a finite element model. The slot permittivity has been calculated to pro- 
duce the same coupling as do the many holes. The radiation pattern has been efficiently computed, and it agrees 
well with measurements. The analysis has for the first time quantitatively predicted the perturbation of the radi- 
ation pattern due to the finite size of the coupling holes. 
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A Surface Admittance Formulation for the Transient Modeling of Skin Effect and 
Eddy Current Problems1 

Karim N. Wassef and Andrew F. Peterson 
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Atlanta, GA 30332 

1 Introduction 

The magnetic vector potential has long been used in finite elements to analyze the magnetic field distribution in 
regions containing permeable and conductive materials. This method has been applied to both skin-effect and 
eddy-current problems successfully. However, in cases where the material properties such as conductivity and 
permeability are several orders of magnitude higher than the surrounding medium, meshing both regions becomes 
computationally expensive and highly inefficient. In this situation, a surface impedance boundary condition (SIBC) 
may be applied to model the expected field response at the material interface. 

The steady-state application of an SIBC is straightforward. The transient analysis using surface impedances 
has also been achieved via the fast Fourier transform [1]. Even though an SIBC is defined as a frequency domain 
parameter, it is desirable to develop a method that is capable of analyzing the transient response at interfaces with- 
out transforming into the frequency domain. The proposed formulation incorporates discrete temporal integration 
using Prony's method in order to create an efficient, recursive procedure. This is similar to the method used in 
FDTD [2] to implement an SIBC. Since the boundary condition, when applied to the magnetic vector potential 
formulation, appears in its reciprocal form, it is better viewed as a surface admittace boundary condition (SABC). 

2 Theory 

2.1    The Magnetic Vector Potential Formulation 
Consider a two-dimensional cross section containing conducting, dielectric, and magnetic materials transverse to 
an applied current and electric field. The magnetic vector potential A is related to the magnetic field through 

H = -VxA = i/VxA (1) 

Maxwell's curl equations (with low frequency approximations) will be employed: 

VxH   =   J + ^SJ (2) 
ot 

VxE   =   -f (3) 

resulting in the electric field dependence on the magnetic vector potential, 

Combining (1) and (2) produces 

V x (i/V x A)   =   J (5) 

'This research has been supported by the US Office of Naval Research under ONR Grant No. N00014-96-1-0926 and by the National 
Science Foundation under Grant ECS-9257927 
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or, since A and J only have z-components, 

-V-(vVA)   =   J (6) 

in a region with sources and non-zero conductivity, and 

-V-(iAM)   =   0 (7) 

in regions with zero conductivity. 
A formalism is used that breaks the total magnetic vector potential into a forcing term and a response term. 

The forcing term is due to the imposed currents in the absence of all materials. The response term is determined 
using 

Atotal     Aforced  i    Aresponae (o\ 

An SABC is used to exclude all conducting regions from the computational domain; thus (7) is the basic equation 
to be solved. 

2.2    The Surface Admittance Boundary Condition (SABC) 

The first order (Leontovich) surface impedance boundary condition relating the tangential field components in the 
frequency domain is 

Er„pon,e (w) = Z.(ui)H^'"'(u) (9) 

where 

z.M = (i+iWg = ^a£ do) 

The surface admittance is 

y.(u) = -U/^ (ii) 

If recast in terms of the primary unknown A, the Surface Admittance Boundary Condition (SABC) becomes : 

"(~^?)   = ^M(-i^M) (12) 
or, in the time domain, 

This condition will be imposed at the surface of good conductors, in order to exclude those regions from the 
computational domain. 

3    The Finite Element Formulation 

The finite element formulation is used to find the forced magnetic vector potential by solving 

-V • v0VA!"":cd - Jl<^cci (14) 

for a given current distribution. Eqn. (14) is converted to a weak form 

I (V/3 • vVA'W - f ßv^-dS = [ ßj'dV (15) 
7A Ja      on JA 
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Figure 1: Computational domain used in determining the forced vector potential. 

Figure 2: Computational domain used in determining the total vector potential. 
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where A is the computational domain with all materials absent, bounded externally by fi. An absorbing boundary 
condition 

8A 
dn     ij^lnfij«,) (16) 

is imposed on Ü, where R^ is the finite distance to fl from an origin within A. Finite Elements are subsequently 
used to find Atotal by solving 

-V ■ i/VA*""' = 0 

in the presence of all materials. Eqn. (17) is converted to a weak form 

f (V/3 ■ vVA')dV - [ ßu^-dS - f ßv^-dS = 0 
JA Jn      on Jr      dn 

where Q denotes the external boundary and T denotes collectively the surface of conducing regions. 
After separating the total magnetic vector potential into its forced and response components, 

(17) 

(18) 

fjVß.»VA<)dV-jy£dS-jy-£dS-lß(Ys*
9-£)dS = 0 (19) 

where the SABC has been employed. Eqn. (22) can be rewritten as 

JW.*A<W- jy-^äS- frß(Y,*d-*)dS = - Jrß(Ys^yS + jy-^-dS (20) 

4    Evaluation of the Finite Element and Boundary Element Terms 
Using standard first-order linear finite elements, the boundary integral can be implemented along an edge as follows: 

-'jr[i+.-^'^]*jr^8^w-,)>-r 

= i 

- 1 
3 

1   ' 
6 

1 
.   6 

1 
3   - 

i:m(^<-'¥ 
<T r 2 l 

6 y px [ i 2 fW 

where 

m    =   jy-(-lA(t-T))dr 

(21) 

(22) 

(23) 
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Since a discrete time integration is needed, let r = aAt and observe that 

Hm+lJAt    , , ,m+l p1'11' dr_ _    1     fm+1 da 

Jm&t        yf?     VÄiJm       <* 
(24) 

Expanding the unit integration using the Prony Series: 

L 
™+i rf„    JL da 

a      t=i 
£>em« = Um) (25) 

where a; and a; are predetermined Prony expansion coefficients for a given number of series terms N. To evaluate 
f (t), let A0 be the first (initial) value of A, An_1 be the value of A at the previous time step, and A" be the new 
(undetermined) value of A. Then, 

1 

^0)- (A" - A"'1) + -L £ ]T a^e™ (A"""1 - A"""-1) (26) 
10   n-l 

Grouping past history terms into a new term tp": 

$>   =    ]>]aie"w(A'*-m-A"-''*-1) (27) 

V>?    =   Vi = 0 
tf    =   ^-(A'-A0) 

=   a;eai (A^A^+e0'^2 

#"    =   aie
a> (An-1-An-2)+e°iVr_1 (28) 

where $"-1, A"-1, and A"-2 are all known terms for the previous time step.   The boundary integral can be 
evaluated: 

M'-#)--^[:ä][^M-W"HÄ{S*}] 
zo(0)e f~5- [2 i ] f Ai l" _ z„w rj2 [2  1 ] f AX \"

_1 

6     VA"TA* L !   2 J I ^2  I 6     VVA* i X    2 J I A2 / 

+ iys[-]{|i::j;F 
The interpretation of this result is different based on whether the magnetic vector potential A is the forced or 
total field term. In the case of the total field matrix components, the first term acts on the unknown new values 
of A (at time n). This term remains on the LHS of the finite element matrix. The remaining terms act on past or 
previously computed values and therefore act as forcing terms in the RHS vector of the system of equations. In 
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the case of the forced field components, all terms are pre-computed and act as RHS forcing vector terms. 
Define 

<   =    l\fS (30) 

10 

*   =    X> (31) 
1=1 

AAf   =   A'("> - A""-1» (32) 

The total field matrix term is: 

[B]{AY = ZMe\l   \]{%Y (33) 

The total field forcing vector term is: 

^ -- -^\\\]{ir+e[\\]{tY      04) 
J -Z„(Q) hAf"-^ + 4'"-1') + 2*'/"' + *f "'  1 

=    e\ -Zo(0)(At
1
("-1'+2Af-1»)+*f» + 2*f»   ' (35) 

The forced field forcing vector term is: 

Z„{0)(2AA{ + AAf
2)+2^ + ^ 

^   ZO(0)(AA>+2A4)+ *{<">+2*2'(n)   ' 

{R}f   =   Z„(0)e\
2 

+   «I?   ;M   :W 06) 

Therefore, 

iß{Ys*w)dS   =    P1W + W (38) 

I/{Y**d4)ds = <*>' (39) 

5    Results 
To demonstrate the method, consider a copper coaxial cable carrying a transient carrier signal at 50KHz. The 
conductivity of the copper is 5.9595 xlO6 S/m. The geometry of the coaxial cable is such that a=50mm, b=100mm, 
c=110mm, and the outer boundary SI is located at d=150mm. The time discretization is 10 divisions per period. 
The forcing current is 1 Ampere ( assuming uniform distribution over the conductor area) and ramped using a 
cosine waveform over 10 cycles (100 time steps). 

Delaunay triangulation was used to mesh the problem space. The results are compared to the analytical solution 
derived for the case of a perfectly conductive coaxial cable. 
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These analytical solutions are 

R       -     ^ 
v          2-Kp 

a< p<b 

Ipself      _     Lself 

2n 

(40) 

(41) 

and are illustrated in figures (4) and (5). 

Figure 3: Geometry of the coax. 

6    Conclusion 
A surface admittance boundary condition is incorporated into a magnetic vector potential formulation for skin 
effect/eddy current applications. Results indicate the validity of this method. Future work will consider the 
extension of this approach to incorporate non-linear materials. 
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Figure 4: The numerical vs. exact solution of the magnetic flux for the conductive coax. 

50 100 
Number of Iterations 

Figure 5: The numerical vs. exact solution of the magnetic flux per unit length for the conductive coax. 
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Abstract 
Analysis of a 3-D stray-field loss model (TEAM Workshop Problem 21) is carried out by 
using the time-periodic finite element method The flux density and iron loss (eddy 
current loss  and hysteresis  loss)  are compared with those obtained measurement. 

I.    INTRODUCTION 

A 3-D stray-field loss model (Problem 21) has been proposed as an engineering 
problem to study eddy current loss distribution in steel plates[l]. The results of linear 
analysis for Problem 21 have been already reported[2]. It was shown that the eddy current 
loss of the steel plate is affected by the permeability of steel plate. Therefore; in order to 
examine the eddy current loss of the steel plate, it is necessary to analyze magnetic fields 
taking into account the nonlinearity of steel. 

In this paper, the nonlinear analysis of Problem 21 is carried out by using the time- 
periodic finite element method[3-5]. The flux and eddy current distributions and eddy 
current loss[6] and hysteresis loss are compared with those of the linear analysis and the 
measured ones. 

H.    3-D   STRAY-FIELD   LOSS   MODEL   (PROBLEM   21) 

Fig. 1 shows the analyzed models. Model A consists of two coils of the same 
dimensions and two steel plates. In the center of one steel plate, there is a rectangular hole. 
The directions of exciting currents of those coils are different from each other. Model B 
consists of two coils and a steel plate without hole. Fig. 2 shows the outline of flux and 
eddy current distributions. The ampere-turns of each coil is 3000AT (rms, 50Hz). The 
conductivity of the steel plate is 5.875xl06S/m. The B-H curve for the steel plate is shown in 
Fig.3. 

m.   METHOD   OF   ANALYSIS 

A. Fundamental Equations 

In the 3-D finite element method analysis using edge elements, the residual Gi for the i- 
th unknown variable is represented as follows [7]: 

G, = f j|rotNi • (v rotA)dv -JJJN,. • J0dv + JJJN,. • G—dv (1) 

where A is the magnetic vector potential, J0 is the current density vector in the magnetizing 
winding, v and a are the reluctivity and conductivity, respectively. 
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Fig.l Analyzed model (problem 21). 
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Fig.2 Schematic diagram of flux and eddy current distributions. 
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B. Nonlinear Analysis 

In the nonlinear analysis using the Newton-Raphson iterative technique, the increments of 
the unknown variables   S Aj   are obtained from the following equation[4]: 

dG, 

dA, 
{5Aj} = -{G,} 07=1,2,---,n«) (2) 

where nu is the number of edges with unknown potentials. The coefficient matrix [dGi /dAj] 
in (2) is symmetric. 

C. Time-Periodic Finite Element Method 

When the waveform of a vector potential is symmetric and periodic as shown in Fig. 4, the 
following relationship holds between vector potentials A1 and At+^^ at the instants t and 
t+T/2 (T: period): 

A'=-Ac- (3) 

In the time-periodic finite element method, the vector potentials Al, , At+T/2-At (At: 
time interval) are treated as unknown variables, and they are calculated simultaneously taking 
into account the relationship of (3). 

When the potential at each instant is treated as unknown variable, the equations for the 
nonlinear analysis are as follows[3,4]: 

[CpArHH'pA^-iGl] 
[e+* ]{SA' }+[/r+iJ ]{8A';* }=-{G';

N
 } 

(4) 

[c*Tß-* \{5A';TI1-2"}+[H
HT/2

-* ]{SA';
T

>
2
-" }=-{G';

712
-* } 

5000     10000     15000      20000 

H(A/m) 

Fig.3 B-H curve. Fig. 4 Periodic waveform. 
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where [C] and [H] are the same as those of the conventional time-stepping method[8]. 
By applying the relationship of (3) to {SAj r"4'} in (4), the following matrix equation is 

obtained: 

[If]        0 
[C+*]   [ff'+/u] 

[C] 

o       o    - [c"+r/2-4'] [//,+"2-4']J[{5A;+r/2-i'}J   [-{G;
+772

-
4
'} 

{SA';
A
'} ~{c;A'} 

(5) 

As the coefficient matrix in (5) is very large, considerably long CPU time and large computer 
memory are required for the solution by conventional method. Therefore, an iterative 
technique is introduced by dividing (5) into the following equations[3]: 

[H'+"'i']{5AJ""""} = -a■^,[C+'"i']{5A;+lm-"4'}-{G;+m4'} (m = 0,l,-,«5-l) (6) 

where ns is the number of time steps in half a period. ßm is equal to -1 (m=0) and 1 (m^O). 
a is the relaxation factor[3] and is chosen to be zero, because minimum modification is 
required in the software for the time-stepping method. Although a is chosen to be zero, the 
relationship of (3) is taken into account in the second term of the right-hand side of (6). The 
nonlinear iterations are carried out in the outer loop of the time step iterations [4] until A 
converges as shown in Fig. 5. By using this iterative technique, the nonlinear steady-state 
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magnetic fields can be obtained within shorter CPU time than the time-stepping method[8] in 
which the nonlinear iteration is carried out at each step from the transient state to the steady 
state. 

IV.    RESULTS    AND   DISCUSSION 

The magnetic fields of Problem 21 are analyzed by the 3-D finite element method using 
the 1st order brick edge element. One half of the region is analyzed for model A and one 
quarter of the region is analyzed for model B. Fig. 6 shows the mesh for model A The steel 
plate is subdivided into 9 layers. Table I shows the comparison between the discretization 
data for the linear and nonlinear analyses. The CPU time for the nonlinear analysis is only 
about 5 times longer than that for the linear analysis. 

Fig.7 shows flux and eddy current distribution obtained from the nonlinear analysis. 
cot=-90° means the instant when the exciting current becomes minimum. Fig. 8 shows the 
comparison of the flux densities near the steel plates obtained from the nonlinear and linear 
analyses. The results measured by Dr. Z.Cheng[9] are also shown. Tables II and III show 
fluxes linked with the steel plate and exciting coil. The positions A to C and G to I are shown 
in Fig. 1. The discrepancies between the linear and nonlinear analyses and measurement are 
small. Fig. 9 shows the comparison between the eddy current densities on the surface of the 
steel plate obtained from the linear and nonlinear analyses. 

In order to investigate the discrepancy between the eddy currents obtained from the 
linear and nonlinear analyses, the effect of the permeability of the steel plate on the flux and 
eddy current distributions in the steel plate is investigated. Figs. 10 and 11 show the results 
obtained. The flux and eddy current distributions in the steel plates are affected by the 
permeability due to the difference of the skin depth. 

Fig. 12 shows the eddy current loss in the steel plate. The eddy current loss We is 
calculated by the following equation: 

We = % 
2CT" 

-I ./e" (7) 

where Je is the maximum value of eddy current density, ne is the number of elements in the 
steel plate and V is the volume of an element e. The eddy current loss in the steel plate 
obtained using the linear analysis is decreased with the permeability. This is because the eddy 
current in the steel plate is reduced due to the increase of opposing field produced by eddy 
current when the permeability is increased. 

Table I Discretization data and CPU time 

(-500,0,-1000) 
(a) whole region 

winding 
steel plate 

(b) steel plates and 
windings (model A) 

Fig.6 Mesh. 

model A (l/2region) B (l/4region) 

analysis linear nonlinear inea? nonlinear 
element type lst-order orickec 

no. of elements 60,060 33,480 

no. of nodes 65,178 36,704 
no. of unknowns 170,333 94,285 

no. of non-zeros 2,772,105 1,526,165 
memory 

123 78.4 66 43.3 

no. of iterations 
for ICCG method 6,351 60,806 5,124 60,273 

CPU time (h) 5.3 25.5   2.4 14.0 

computer used : IBM3AT workstation (49.7MFLOPS) 
convergence criterion for ICCG method :10"7 

*1 time harmonic finite element method (jco method) 
*2 time periodic finite element method 
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Fig.7 Eddy current distributions (x=-4.9mm). 

200    300 
z(mm) 

Fig.8 Flux distributions 
(x=5.76, y=100). 

linear 
(us=1000) 

**K^ linear 
51— (us=1000) 
(b) model B 

Fig.9 Eddy current distribution (x=4.9,y=0). 

Table II Flux linked with steel plate 
flux(X10-3wb) 

metnoa 
A B C 

linear(us=1000) 0.149 0.313 0.314 
calculated 

nonlinear 0.149 0.312 0.312 

measured 0.152 0.311 0.328 

Table III Flux linked with exciting coils 
flux(X10-3Wb) 

method 
G H I 

linear(us=1000) 0.822 0.825 0.824 
calculated 

nonlinear 0.823 0.825 0.823 

measured 0.836 0.830 0.843 
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Table IV shows the calculated values of eddy current loss and hysteresis loss. The 
total iron loss Wt in the steel plate measured using watt meter is also shown. Assuming that 
the hysteresis loss Wh is the function of the maximum flux density Bm, Wh is calculated by 
the following equation: 

W7i = £w/!(Bm(")V(' (8) 

where wh is the dc hysteresis loss. Fig. 13 shows wh-Bm curve. This is obtained by the 
following process: Firstly, dc hysteresis loop of steel plate is measured using a permeameter. 
Then, the area of hysteresis loop is calculated and this value is transferred to 50 Hz. Table 
IV suggests that the hysteresis loss Wh is not negligible even if the flux density in air is small. 
This is because the flux density near the surface of the steel plate is up to about 0.8T. 

2.0 

1.5 

B   1.0 

0.5 

0 

steel plate 

linear 
D •   /js= 400 
° ; 1000 

5000 
 nonlinear 

-4-2024 
x(mm) 

(a) model A 

steel plate 

linear 
n :    /is= 400 
° : 1000 

5000 
—:   nonlinear 

-it  II  I 
-6   -4 -2024     6 

x(mm) 

(b) model B 

: model A 
: model B 

_j i ■ i 11HI _J I ■     ■    I   ■   M' 

J6 

24 
X 

?2 

0 

Fig.10 Flux distribution (y=0, z=140). 

15 10 r ,        steel plate       e 

I        linear 
ID:    JIS= 400 
I   o '■ 1000 

' I   * '• 5000 
nonlinear   °J 

steel plate       . 
I— : »J 

100 400     1000 5000    10000 
relative permeability p* 

Fig. 12 Effect of permeability on 
eddy current loss. 

-6   -4 2    0     2     4    6 
x(mm) 

(a) model A 

-6   -4 -20246 
x(mm) 

(b) model 6 

Fig.ll Eddy current distribution (y=0, z=140). Fig. 13 Hysteresis loss of steel 
plate (50Hz). 

Table IV Comparison of calculated 
and measured iron losses 

iron loss (W) 

model calculated measured 

We Wh Wt Wt 

A 5.7 3.6 9.3 8.7 

B 8.8 4.1 12.9 11.8 
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V. CONCLUSIONS 

The nonlinear analysis of Problem 21 is carried out by using the time-periodic finite 
element method. The results obtained from the nonlinear analysis are compared with those 
obtained from the linear analysis and measurement. The results obtained can be summarized 
as follows: 
(1) The CPU time for the nonlinear analysis using the time-periodic finite element method is 
only about 5 times longer than that for the linear analysis. 
(2) The flux and eddy current distributions in the steel plate are affected by the permeability of 
the plate. Therefore, the nonlinear analysis is obligatory to investigate the eddy current loss in 
the steel plate. 
(3)The hysteresis loss in steel plate is not negligible even if the flux density in air is small in 
some cases. 
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Jacobi-Davidson Algorithm for Modeling Open 
Domain Lossy Cavities 

Chibing Liu*and Jin-Fa Lee* 

Abstract— This paper presents the application 
of the newly developed Jacobi-Davidson (JD) 
algorithm to solve quadratic eigenmatrix equa- 
tions. The quadratic eigenmatrix equations are 
resulted from using vector finite element meth- 
ods to model open domain electromagnetic cavi- 
ties. The derivation for the JD algorithm pre- 
sented here uses Newton's method for solving 
non-linear equation. Consequently, it is intu- 
itive to see the quadratic convergence rate for 
the basic algorithm when a good initial guess is 
provided. The complete JD procedure is then 
derived by combing the basic algorithm with 
Davidson's subspace method. Numerical exam- 
ples show superquadratic or cubic convergence 
even when the correction equations are solved 
with only 10"1 accuracy. 

I.   INTRODUCTION 

In electromagnetics, eigenvalue problems include 
cavity resonance and wave propagation in both 
closed and open structures, such as metallic 
waveguides, open and shielded microstrip transmis- 

"This project is sponsored by ERS International. 
'The authors are with EMCAD Lab., BCE Dept. Worces- 

ter Polytechnic Institute, 100 Institute Road, Worcester, 
MA 01609. Further correspondances should send to jhv- 
lee@ece.wpj.edu and related publications can be found in 
http://ece.wpi.edu/~jinlee. 

sion lines, optical waveguides, or fibers, etc. These 
problems can be dealt by finite element methods 
(FEMs). The resultant system established by the 
FEM is in the form of: 

A{k)X = 0 (1) ' 

Where A(fc) is a complex and sparse matrix and is a 
function of wavenumber, k. The complex wavenum- 
ber k and vector X are the eigenpair to be solved. 
Here, one aims to find the resonance wavenumber k 
which makes A(k) singular; the corresponding no- 
trivial eigenvector X is the resonant mode. In gen- 
eral, we are interested in only a few dominant modes. 
For a lossless closed cavity, it is well known that Eq. 
1 can be written as: 

(Ao + fc2 A2) X = 0 (2) 

Where Ao and A2 are real symmetric matrices [1]. 
Equation 2 is a generalized eigenmatrix equation 
and there are several approaches available to solve 
such problems [2],[3]. However, for a lossy cavity 
filled with lossy materials and/or with open domain 
(modeled by the use of 1st order absorbing bound- 
ary condition), the eigenmatrix equation will be of 
the form: 

(A0 + kA1 + k2A2)X = 0 (3) 

Where Ao, Ai and A2 are complex square matri- 
ces. Equation 3 is a quadratic eigenmatrix equa- 
tion. The conventional approach to solve 3 is to 
convert it into a generalized eigenmatrix equation by 
employing auxiliary matrices and vectors of larger 
sizes. The drawbacks of such approaches are appar- 
ent. Alternatively, this paper investigates the use 
of the newly developed Jacobi-Davidson algorithm 
[4], [5], [6] to solve for the lossy and/or open cavity 
problems. 

II.    NOTATIONS 

We shall use, throughout this paper, bold letters to 
denote matrices. 
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C: 
fi: 
an: 
TPBC ■ 
r'PMC ■ 

Mr : 
e : 

k: 

V- 

WH: 

{&}■■ 
A-—B: 
©: 
JV(.): 

The set of complex numbers. 
The problem domain. 
The boundary of domain fi. 
PEC boundary surface. 
PMC boundary surface. 
Permeability. 
Relative permeability. 
Permittivity. 
Relative permittivity. 
Conductivity. 
The wavenumber in free-space. 
Intrinsic imepdance of free-space. 
The ij entry of the matrix M. 

i-th vector basis function. 
The tangential components of v . 

The electric field. 

The magnetic field. 
Indicates a column vector. 
Indicates a row vector. 

Transpose of the vector. 
{v | v J_ u}. 
Update A with B. 
Direct sum. 
The null space of operator •. 
The range space of operator •. 

III.    FEM FORMULATION FOR LOSSY CAVITIES 

/\        ABC 
/      i 

ABC i  

ABC'                  1 
I  e o  ii      J _ 

A—^)a 
/ / 

Figure 1 - An open domain lossy cavity. 

Shown in Fig.  1 is an open domain lossy cavity. 
Formulate it in terms of the electric field, E, results 

in the following boundary value problem (BVP): 

V x — V x~E - jkrjo-'E - tfzr~E = 0   in f! 

n x v x E = —jkET on 9fi 

n x E = 0 on Ypsc 

»xvxE=0 on TPMC 

(4) 
Applying the vector FEM procedure to Eq. 4 (the 
hierarchical vector basis functions are described in 
Rets. [7] and [8]), we obtain the following quadratic 
eigenmatrix equation: 

(Ao + fcAj + fc2A2) X = 0 (5) 

with 

(Ao)y    =    / (v x W<A . — (v x W-A dx3 

(Aj )y   =  -in j w$ • owV> dx3 

-j j Wfi . W$dx2 

(A2)y    =    - fw^»eTW^dx3 

IV.    JACOBI-DAVIDSON ALGORITHM 

(6) 

Given a quadratic eigenmatrix equation of the form 

(A0 + A1A + A2A2)X = 0 (7) 

where Ao, A j, A2 are sparse nxn complex matrices. 
In this paper, they are generated from the applica- 
tion of FEM method to three-dimensional open do- 

main lossy cavities. The pair (\X\ which satisfies 

7 is referred to as an eigenpair. Practically, n could 
be a very large number, tens of thousands or hun- 
dreds of thousands are not uncommon. Thus, it is 
desirable to derive an algorithm for solving 7 which 
does not require solving matrix equations, of order 
n, exactly or with high accuracy. Lanczos and/or 
Arnoldi algorithms [9] are already widely used in en- 
gineering community for solving standard and gen- 
eralized eigenmatrix equations. However, without 
shiftings as preconditioners, Krylov subspace meth- 
ods typically do require solving matrix equations 
with high accuracy. This does not necessarily ex- 
clude the use of iterative matrix solution techniques, 
for examples pre-conditioned Conjugate Gradient 

788 



(PCCG) method, to solve these matrix equations. 
But, when the matrix is very ill-conditioned or a 
good preconditioner is not readily available, direct 
methods are usually the only choice. In this pa- 
per, we shall employ the newly developed Jacobi- 
Davidson algorithm which is advocated by van der 
Vorst [5] and his colleague recently. As pointed out 
in [5], the JD algorithm does not require explicit 
factorization of a large matrix and the accuracy of 
solving the correction equation needs not be high. 
In our experiences, a relative residual of 10_1 is suf- 
ficient to achieve superquadratic or even faster con- 
vergences. 

A.    The Basic Algorithm 

Based on 7, we shall first construct a mapping 

/ [\,)C\ = A0X+AAiX+A2A2X = P(X)X (8) 

which maps C xCn into C". In 8, the matrix poly- 
nomial P (A) is defined as P(A) = Ao+AAj+A2A2. 
Consequently, the original eigenmatrix equation 7 is 
transformed into 

find l\,x\eCxCn 

such that 
/(A,X) = O 

Assuming at the k-th step of the iterative process, 
an approximate solution {0, u) is obtained and sat- 
isfies 

u AoS + 0« AjU + 02« A25=«P(0)S = O   (9) 

Our objective is to find the next solution (B',u') 

which is a better approximation than {B,v). To do 
so, we apply the Newton's method for solving non- 
linear equation and set 

u'   =   ü + z (10) 

Substituting 10 into 8 and collecting only up to the 
first order terms results in 

f(e',ü'}    =   A0(ü + z) + (8 + 6)A1(ü + z) 

+ (0 + «)2A2(ü + 2) 

«    (A0 + 0Ai + 02 A2) ü 

+6{A1 + 2BA2)Z (11) 

+ (A0 + 0A, + 92A2) z 

The procedure to compute the update 16',u'\ is to 

set 

/(0',ü')«P(S)ü + «ü + P(0)z = O       (12) 

where w = (Ai + 20A2) v. = P' (8) U. We shall use 
12 to solve for 6 and the correction vector z. 

To obtain an update for 8', or to compute S, we 
simply left multiply u to Eq. 12 and note that u 

P(9)u = 0, we have 

6 = 
uP(6)z _    {P(8)u)'z _ _V 

(13) 

Obviously, the residual vector r equals to P (6) v.. It 
remains to find an appropriate expression to com- 
pute the correction vector z. From Eqs. 12 and 13, 
it can be shown that 

/--^ \P{6)z = -r (14) 

Also, it will be proven later that for any 7 I.V., there 
exists an unique complex vector q such that 

'-^^(/-p)^-' (15) 

Once Eq. 15 is solved for q, the correction vector 

z is obtained simply by z = I / — ^j I q. Thus, 

we have a complete numerical scheme to compute 

the update ($' = 8 + 6, u' = « + z \: first solve for 

q from 15, obtain the orthogonal correction z by 

z = I / — ^ ) q, and finally compute S by Eq. 13. 

To conclude this section, we present a basic algo- 
rithm, Algorithm 1, that can be used to compute an 
approximate eigenpair for the quadratic eigenmatrix 
equation 7. 

Algorithm 1 

Initialization : 

Choose a non-trivial initial vector ü, and solve 

(u A0u\ + (u Ai«) 8+ (u A25) 82 = 0 (16) 

for«. 
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• Compute the initial residual vector f& by 

ro = P(e)Z=(Ao + 6A1 + 0iA2)ü     (17) 

• Set the residual vector r = ?Q. 

Iterations : 
Iterate through the following steps until con- 

verged. 

• Update w by w = P' (9) ü = (A^ + 29A2) 5. 

• Solve for q from 

w u\ f       uu\ 
I =    P(ö)   /--S|? = -r 

uw I \ UU 

Compute the correction vector z by 

z=    I 
V5 q 

and u = u + z. 

• Evaluate S = — ^= and update 9 by 9 = 6 +15. 

• Update the residual vector r by r = P (0) K = 
(Ao + flAi + e2A2)«. 

• If jtj < £, where £ is a prescribed tolerance, 
then stop and (9,u) is a good approximation to 

B.    Quadratic Convergence Rate 

In this section, we shall prove that the basic al- 
gorithm outlined in Algorithm 1 will exhibit a 
quadratic convergence rate when a good initial pair 
is employed. We will establish this fact through a 
series of Theorems. 

Theorem 1 For any two complex vectors u,w € 

Cn, [ u w ^ 0 J, we define a mapping of the form 

M;= / 
w u 

«tu 

Then, 

1. the null space N (Af *) = span {üj} 

2. the range fi(M^) = {üx} . 

Proof: The proof is trivial. 

Theorem 2 Assume that atk — th step of the iter- 
ation of Algorithm 1, we have 

u (A0 + 9Al + 92A2)~1 (Al + 29A2)u1£0   (18) 

Then for every y S {w"1}, the mapping 

F(9): 
wu\ I       uu 

/-—^ P(0) /--s 
uwI \       uu 

is non-singular. Namely, Vy 6 {M
X

 } , F (0) y # 0. 

Proof: We shall prove it by contradiction. 

• Assume that there exists an y £ {u^ } such that 
F(9)y = 0. 

• It follows that 

P[9)y = aw 

= a (Ai + 26A2) 5 

u(Ao+ÖAi+e!A2)si 
where a = = r-= . 

(19) 

• Since 9 (9 ^ A) is not an eigenvalue of Eq. 7, 
(Ao + 9Ai + 92A2) is non-singular. Also, the 
coefficient a ^ 0 for non-trivial y. For if a = 0, 
then the condition (Ao + "Ai 4- 92 A2) j/ = 0 
implies 2/ = 0. 

• Moreover, from Eq. 19, we have 

y = a{P(9)YlP'(9) Ü (20) 

Equation 20 and the fact that y 6 {«"""} yield 

a(u(P(0))"1P'(0)s)=O        (21) 

• Because a^O, the only possible solution to Eq. 
21 is 

u {A0 + 9Al + 62A2y
1 (A1+29A2)« = 0 

(22) 
which contradicts to the assumption 18. tt 

Additionally, since the matrix 
(Ao 4- 6Ai + 92A2)  becomes more singular when 

(9, u) converges to ( X,X V we should also consider 

the limit when (9,u) = (A,X\ whether or not the 

mapping P(A) is non-singular for any y S \XX {• 

The following Theorem guarantees just that. 
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Theorem 3 Suppose (\X) is an eigenpair ofEq. 

7 and with X a simple eigenvalue. Assuming also 
that X X ^0 and X w =X (Ai + 2AA2) X ^ 0, 

then the map 

F{\): 
wX\ (      XX 

Xw)     wl        XX 

is non-singular for any non-trivial right-hand-side 

vector y£ < Xx >. 

Proof: Again, we shall prove it by contradiction. 

• Suppose there exists a non-trivial vector y G 

\xx\ such that F(X)y = 0, then 

X(Ao + AAi+A2A2)y 
P(X)y   =    — 

Xw 

(P(X)x)'y 
=    -i -i—w = 0 

Xw 
(23) 

• Since P (A) y = 0, (A, y) must be an eigenpair of 
Eq. 7. Namely, both X and y are eigenvectors 
with the same eigenvalue A. This contradicts to 
the assumption that A is a simple eigenvalue. J 

Theorem 4 The null space and the range of the 
mapping F (9) are: (a) N (F (0)) = span {v.}; and 
(b)R{F(0)) = {u^}. 

Proof: 

• It is obvious to see that F (0) v. = 0. Together 
with Theorem 2 and 3, we have N(F(0)) = 
span{ü}. 

• From theorem 1, we have R(F(0)) C {S-1}. 
Moreover, the facts 

dim{N{F{0))) + dim(R(F{0))) = n 

dim(iV(F(9))) = l (24) 

implying that dlm(R(F{0))) = n-\. 

• Since dim ({«"""}) = n — 1, therefore, we con- 
clude R{F($)) = {uL}.$ 

Remark 1 Theorem 4 guarantees that for any 7 e 
{Kx}, there exists an unique q e {ü1-} such that 
F(0)?=-f. 

Theorem 5 Assume that the correction equation is 
solved exactly in Algorithm 1, and also u w ^ 0, 

u ü ^ 0 in every step. Then, if the initial vector 

v, is close enough to X, the sequence of (0,v) con- 

verges to (X,X\, and the convergence is quadratic. 

Namely, given a good initial approximate eigenpair 

(0,ü), the update (B',U'\ satisfies 

\\X-ü'\\cxO(\\X-ü\\2^ (25) 

Proof: 

Define the error vector of the initial vector 2 as 
e — X — ü. 

In the iteration, we solve for the correction vec- 
tor z by 

w u\ 

and update 5 by u' = 5 + z (note z € {u1}). 

It follows that X — u' = e - z. 

From the fact (A0 + AAX + A2 A2) X = 0, we 
have 

P{0)e   =    -r 

+ (A2A2 - AP' (A)) X (27) 

with A = A — 0.  Neglecting the second order 
term (A2), we can approximate A by 

uP(B)e re 

u(A!+2AA2)X        uP'(\)X 

It is easy to see that 

|A|<,     M   _.PI1 
\uP'(X)X\ 

(28) 

(29) 

Multiplying Eq. 27 by   J 
Wll\ 

and subtract- 

ing Eq. 26 yields I note f I - ^ 1 r = r ) 

I--^\P(9)(e-z) 
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w u\ 

w u\ 
=    A2(/ = |A2Ü 

(30) 

Taking L2 norm on both sides of Eq. 30 results 

w u 

A2 J/-S) A2K 

-('-£) (* 1A2 - AP' (A)) e 

<     A2 
tu « 

/ = I A2Ü 

wu 
'-^K^-P-WJAe 

<   /31|A
2|+&||Ael|<7||el|5 

where 7 = /?i r I+ßiT 

(31) 

It is easy 
|uP'(A)X| |«P'(A)X| 

to see that ßx, ß2 < oo, and unless u P' (A) X = 

0, also 7 < oo. 

Since (e — 2) S {«-"-} and from Theorem 2 and 
3, we conclude that there exists a > 0 such that 

'-^Kwe-2) >a||e-Z||   (32) 

• By combining Eqs. 31 and 32, we have 

\\e-z\\<l\\e\\2 (33) 

which proves the quadratic convergence rate of 
Algorithm I. 

C.    Jacobi-Davidson    Algorithm   for    Quadratic 
Eigenmatrix Equation 

In examining Algorithm 1 closely, one can observe 
a major inefficiency.  That is, in building the next 

update, Algorithm 1 uses only the information of 
(0,5) and discards all other information acquired 
through the entire iterative process. By combin- 
ing Algorithm 1 and the subspace projection that 
is commonly adopted in Lanczos and Arnoldi meth- 
ods, we arrive the complete Jacobi-Davidson algo- 
rithm, Algorithm 2, for solving the quadratic eigen- 
matrix equation. Since Algorithm 2 obtained a bet- 
ter approximation than Algorithm 1 (in fact, the 
best projection available from the current search 
vector space) in every step, we should expect better 
convergence rate than quadratic. In many numerical 
examples, we observed most of time super-quadratic 
and sometimes cubic rate of convergence. 

Algorithm 2: Jacobi-Davidson Algorithm for 
Solving the Dominant Eigenpair of a Quadratic 

Eigenmatrix Equation 

Initialization : 

• Set k = 0, and choose a non-trivial initial vector 
vo and do 

«o 

Vo = {vo} (34) 

Iteration : 

• Compute 

W0<—AoV*,   W1^AIVfc,   W2—.AaV* 
(35) 

and 

H0«—V£W0,   Hi*—V^WL   H2 — V£W2 

(36) 

• Solve the eigenpair {6 = 9max,y) from the re- 
duced quadratic eigenmatrix equation 

(Hb + OHl + fl2H2)y = 0 (37) 

• Compute 

u <— Vky, 

w<— (A1 + 2ÖA2)w, 

r ^— (Ao + 0Ai 4- 92 A2) u (38) 

• If T& < £, where £ is a prescribed tolerance, 

then stop and (0,u) is good approximation to 
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Solve for t approximately D.   Sample Numerical Examples 

I--^\p(e)[l--^)tK-r-    (39) 

and compute the correction vector z by z = 

It 
('"*)' 
Expand the search space Vj, by modified Gram- 
Schmidt process, namely 

k 

Vk+i - z - ]T [i. ?') ?' (40) 

and 

"*+!-^ nfeif •   v*+1=v* ©{?*+,} 
(41) 

fc = fc + l. 

What remains is how to solve the correction vec- 
tor z practically without explicitly forming the map 
F {&). This question can be answered by the follow- 
ing Theorem. 

Theorem 6 The correction vector z in the h — th 
iteration of Algorithm 2 can be computed by 

w'=(Ao + 6A1+02A2)~
1w,   z = -v, + -^pw' 

"   (42) 

Proof: 

• First, it is easy to see that u z = 0 in Eq. 42, 

regardless of what w' is. 

• Secondly, 

I--^\P(9)z 

-r-\ =;TO 
u w 

In example 1, the matrix dimension is n = 29,980, 
and we are to solve for the smallest (modulus) 
eigenvalue. It corresponds to A = —0.1467113 + 
jO.1276269. The second example, we explore the 
performance of the Jacobi-Davidson algorithm for 
an interior eigenpair. We randomly choose A0 = 0.5 
and solve for the eigenpair that is closest to it. The 
results of these two examples are summarized in 
Table 1. Note in both examples, the correction 
equations are solved approximately, with the accu- 
racy in terms of relative residual of10~', using an 
PCCG (pre-conditioned Conjugate Gradient) [10] 
method. For the smallest eigenpair, we observe a 
superquadratic convergence, whereas for the interior 
eigenpair, we even observe supercubic convergence. 

Iter. Example 1 

e **{&) 
0 0.2756432 - jO.2748964 0 
1 -0.3003151 - jO.3104875 -0.818 
2 -0.01645236+ J0.121385 -1.481 
3 -0.1422936+ J0.1281352 -3.375 
4 -0.1467113 + jO. 1276269 -7.252 

Iter. Example 2 

6 Mm 
0 0.153926 + J0.5926128 0 
1 0.300567 + J0.0966729 -0.4145274 
2 0.47915432-j'0.762863 -1.8485773 
3 0.47343582+J0.238413 -6.161849 

(43) 

Table 1: Convergence of two eigenpairs for a 
quadratic eigenmatrix equation with n = 29,980. 

Moreover, we have also computed the smallest 
eigenvalue of this quadratic eigenmatrix equation by 
using a modified Arnoldi's [3] algorithm which uses 
A^JA2 to generate the necessary Krylov subspace 
from an initial random vector. The performance of 
this modified Arnoldi algorithm with the said Krylov 
subspace is compared against the current Jacobi- 
Davidson's algorithm in Fig. 2. The Krylov based 
approach, since it is not quite exact for the quadratic 
eigenmatrix equation, only exhibits linear conver- 
gence. 

V.    CONCLUSIONS AND DISCUSSIONS 

Consequently, z computed from Eq. 42 is a so- 
lution to the correction equation, and it follows 
from Theorem 2, the only solution. 

In closing up this paper, we should point out two 
major areas regarding the Jacobi-Davidson's algo- 
rithm that in our opinions still require extensive re- 
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Figure 2 - Convergence comparison between JD al- 
gorithm and a modified Arnoldi approach for solving 
a quadratic eigenmatrix equation. 

search work. One is the issue of multiple modes. A 
possible solution would be to restart with a differ- 
ent initial guess, however, there is no guarantee that 
this leads to a new eigenpair. Or we may employ the 
popular deflation technique. That is when an eigen- 
vector has converged, then we continue in a sub- 
space spanned by the remaining eigenvectors. But, 
the benefits of deflation and/or selective orthogonal- 
ization type processes are questionable for quadratic 
(or polynomial) eigenproblems when the matrices do 
not commute. Secondly, in Algorithm 2, most of the 
computational effort (CPU time) is spent on solving 
the correction equation on the last iteration. This 
is mainly due to the fact when the Ritz pair is al- 
most converged, the matrix equation becomes very 
ill-conditioned (almost singular). Without proper 
care, the preconditioners that based on, one form 
or another, LU factorization will become extremely 
unstable and subsequently hinder the PCCG conver- 
gence even for 10"' accuracy. A matrix solver that 
resolves this difficulty and removes any unwanted 
component in the correction vector will improve fur- 
ther the efficiency of the algorithm. 
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Abstract - The full wave analysis of electromagnetic field 

penetrated through the apertures of a shielded enclosure is 

discussed. The electromagnetic field inside a shielded enclosure 

is dependent on the physical dimension of a metallic enclosure 

as well as the size, shape and number of apetures. Analysis 

including the above two considerations by 3-D finite element 

method and measurement are performed for some shielded 

enclosure having front panels of different-type apertures. Good 

agreements were obtained between analytical and empirical 

results. 

I. INTRODUCTION 

As the worldwide rules and regulations on electromagnetic 

immunity start, shielding techniques become more important. For 

the design of an excellent shielded enclosure, we must account 

for the two important considerations. One is the choice of good 

shielding material, the other is the design of a good shielded 

enclosure including holes and penetrations. The former becomes 

important in lower frequency range while the latter is important 

in higher frequency range. This paper deals with electromagnetic 

penetrations through cavity-backed apertures. 

The electromagnetic field inside a shielded enclosure is 

dependent on the physical dimension of a metallic enclosure 

itself, as well as the size, shape and number of apetures. Simple 

predictions are possible for the electromagnetic penetration 

through the apertures of an infinite shieled plate[l, 2]. But 

these methods can not provide informations about the 

geometrica] effects of the shielded enclosure, such as cavity 

resonances. 3-D numerical analysis techniques must be used to 

improve these weak points. FDTD, TLM methods can be used 

to analyze these struectures, but because the size of an aperture 

is relatively small compared with that of a shielded enclosure, it 

is difficult to apply the straight forward approach of these 

methods[3,4]. 

In this paper, finite element method with boundary integral 

method is presented for. the electromagnetic penetrations through 

the  cavity-backed-apertures.   The   validation   of   this   analytical 

approach   is  confirmed  by   comparing   calculation   results  with 

measurement results 

H. FORMULATION 

Fig. 1   Shielded enclosure having apertures. 

Fig. 1 shows a typical shielded enclosure having aperture(s). 

Coordinate axes are chosen as shown in Fig. 1. To apply finite 

elemet method, the shielded enclosure is separated into two 

regions. One is the outside region of a shielded enclosure, the 

other is inside of that. Electromagnetic fields inside a shielded 

enclosure is obtained by FEM, and the outside field is obtained 

by boundary integral method using Green's function. And field 

continuity condition is applied at the apetures, electromagnetic 

filed which is valid everywhere is finally obtained. 

1. Boundary integral equation 

The electric field in free space outside of shielded enclosure 

satisfies the vector wave equation 

vx7x£(r)-^r) = -;Wr) (1) 

To find the radiated fields we intorduce the dyadic Green's 

function Ge{r,r) which satisfies the inhomogeneous differential 

equation 

V y V x C^( r, r) - kf(Tc( r. r) = ?<5( r- r) (2) 

By using this Green's function electic field can be written as 
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E(r) =   -;Vo| / fvKr-)-*G£(r,r)dV 

-§f {[»x£(r)I- {V'xG^(r.r')] (3) 

+ [«xv'x£(r)]-C;(r,r)}dS' 

where S„ denotes the surface enclosing V« and « is the 

outward unit vector normal to the surface and V has been 

used to indicate that v operates only on the primed 

coordinates. If the size of the aperture is smaller than the size 

of shielded enclosure, half space Green's function may be used 

to obtain electic filed. By this introduction, the electric field can 

be expressed as 

E{r)=  -jk0Z0f j jvKS)-~C,(r,r')dV 

+ }k0ZDj fjvKr')-['Go(r,ri-) (4) 

-IzzG^r.rVldV 
+ 2J Js[2x£Xr')] ■[v'xG0(r.r)]dS' 

The first term on the right-hand side is the field radiated 

by J in the free-space environment, thus denoted as   E mc. The 
second term is the field radiated by the image current of j, thus 

denoted as    E"*. The third term is scattered field due to the 
aperture. With these indentifications, equtiaon (4) can be written 
as 

£Xr) = Ei*c+En/ = (5) 
+ 2j*J"s[£x£(/)]-[v'x GQ(r.r")]dS- 

which also can be written as 

vxE(r) = -jk0Z0H^-;ka0H
r^ (6) 

-2*2//j*x£(0]- Goir.rldST 

Equations  (6)  denotes  relationship   between  the  electric  and 

magnetic field. By letting z approach zero, we obtain 

zx[vx£(r)]I=o+ 

^-ühZozxH^r) ^ (7) 

-2A^x J jsl^E{r)]- G^r.r)dS- 

2. Finite element formulation 

By assuming there no source inside the shielded enclosure 

electric field satisfies the vector wave equation 

tSF(E) = 0 
\ «x£=0      at cavity wall 

F(E) = 

VX(-L vx£)-fco£,£=0    re V (8) 

At   the   shielding   enclousre   wall,   the   tangential   electric   field 

vanished. 

«x£=0 (9) 

At the opening an equivalent boundary condition can be obtained 

from the integral equation (6) as 

Jxf-Lvd        + f\E) = UiK (10) 

where, 

UÜK=-2jk0Z0lxH*{r) 

PiE) = 2k&x f Jj £*£(/)] • T0(r.r)dS- 

The equivalent variational problem for this is given by 

?\dV (12) 

-rJ"J-±-£-P(£)-E- U^dS 

To reduce its singularities  some mathematical calcuatioans were 
performed to obtain 

F(E) = 
{///J-^(v x£) - (v x£)-^£r£. £]^ 

-kl))s[lxE{r)}- 

ij fs[zxE(r)]Gli(r,r)dS'\dS (13) 

+ fjSt(vizxE(r)}} 

{ J7s<C0(r.r')V - [SxE(r')]dS-}dS 

+ 2;kQZ0fJs[z-xE(r)) ■ HiK(r)dS 

3. Bondary condition of the probe 

To prove the validation of our calculation, measurements 

were performed using probe, details of the probe will be 

presented in section ID. To compare calculated results with 

measured, the situation of probe inserted is approximated by 

FEM. In this case we must impose the boundary conditions at 

the surface of the probe and at the cross section of the coaxial 

cable which is connected to the probe. The probe of our 

measurement system is composed of conducting material, so at 

the surface of the probe equation (9) must be imposed. At the 

cross section of the cable the fields may be considered as 

transverse electromagnetic field. The boundary condition of this 

case is 

nx£+jk0E=Q (14) 

To impose this bouandary condition, Fp must be added to 

equation (13) 

Fp= J Js -&*-( nxE) ■ ( n*E)dSt (15) 

where  Sf denote the cross section of the coaxial cable. 

m. Results 

Fig. 2 shows test set-up for measuring the electromagnetic 

shielding effectiveness of a shielded enclosure. Some test results 

were obtained by replacing front panels of a shielded enclosure. 

A monopole probe was injected into shielded enclosure to 

measure an inside electric field strength. The probe was made 

in the cylindrical type of 80 mm length and 2 mm diameter. 

The size of test box, represents shielded enclosure, is 200 mm 

by 400 mm by 500 mm. The measurements were performed 

inside full anochonic chamber which its refection loss is below 

-20 dB from 30 MHz to 1  GHz frequencies ranges. To measure 
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reference values, test box is removed and isotropic probe was 

placed at the same position. The square of the electric field 

measured by isotropic is used as reference values. By this 

procedure, we may compare measured and calculated values 

easily. Electromagnetic shielding effectiveness is defined as the 

differences between reference and measured values. The distance 

between test box and antenna is maintained 3 m which is 

typical in the radiated susceptibility measurement in accordance 

with commercial standards. 

To consider the effects of a probe inside shielded enclosure, 

we approximate a probe using rectangular brick elements to 

reduce memory demand as shown in Fig. 3. Integraion between 

two conductor is performed to obtain voltage differences Vd. 

To compare this calculated values with measured values, the 

expected values at the receiver (Spectrum analyzer) may be 

obatined   by 

i>=201og|Kj-10bg50+System Gain Loss (16) 

Fig. 4 show the measured and calculated results. Good 

agreement between measured and calcuated can be found. Fig 5 

shows comparison between our calculation and the calculation of 

Schulz[2]. Good agreement between two results is found. 

However, Schulz's calculation can't show the geometrical effect 

of a shielded enclosure at resonant frequencies of the struecture 

and field distribution inside a shielded enclosure, while those are 

provided by our calculation. 
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Fig 2. Test setup for measuring the shielding effectiveness 

of a shielded enclosure. 

Fig 3. Finite element approximation of probe 
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Fig 4. Comparision of calculated and measured results. 
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Sot size : 2 cm by 4 cm 
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Fig 5. Comparision of our calculated and Schulz's[2] 
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Abstract 

A model problem for the steady-state form of Maxwell's equations is considered. 
The problem is recast into a weak form using a Lagrange multiplier, laying down a 
foundation for a general class of novel /ip-adaptive FE approximations. The proposed 
method is illustrated and verified by a series of 2D experiments which include domains 
with curved boundaries and nonhomogeneous media. 

Key words:  Maxwell's equations, hp finite elements, covariant projection, error esti- 

mates 

AMS subject classification: 65N30, 35L15 

1    Introduction 

The goal of the presented research is to design a stable finite element method for the steady- 

state Maxwell equations in domains with complex geometries and/or multiple media with 

varying electromagnetic properties. Singular solutions are expected in both classes of prob- 

lems as the result of rapidly changing material constants and/or rough geometries. 
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One of the most powerful methodologies which permit successful modeling of singular 

solutions is the /ip-adaptive finite elements [1, 3]. We emphasize that a true hp method allows 

to vary locally both element size h and order of approximation p. Only then the exponential 

rates of convergence are accessible for a wide class of functions with singularities. 

The main results of the proposed approach are: 

• a formulation for a class of problems with discontinuous material properties, which is 

uniformly stable with respect to frequency u>, as ui —S- 0, 

• a discretization with the possibility of varying locally order of approximation p and 

element size h, 

• a curved element to model complex, curvilinear geometry. 

In this communication we outline the main points and results of our methodology. For 

theoretical details on the proposed method we refer to [4, 12] and for details on numerical 

work to [10]. 

2    Model Problem.    Mixed Variational Formulation. 
Stability, Existence, and Uniqueness. 

We consider the following model problem. A bounded domain ti consists of two disjoint parts 

Qi,i = 1,2, filled by possibly lossy media with given parameters e,-,fi;,<7,,2 = 1,2, and with 

an interface F12. The boundary T of the domain Ü consists of two disjoint parts: the electric 

wallTi (jBxn = OonTi ) and the magnetic wall T2 ((n{ju>e-\-o-)E) = 0, nx(lVx£)=0 

on F2 ). 

We wish to solve for the electric field E excited in Q by a given time-harmonic exp(juit), 

divergence-free impressed current J'mp subject to the appropriate compatibility conditions 

[6]. 

The standard variational formulation for the problem reads as follows: 

EeW, 

f -(V x £')o(V x F)dx   - f (UJ
2
C- JLo<j)EoFdx (2.1) 

= -jw [ {Jimp oF)dx,    VF e W 

where W =r{E 6 fjT(curl, Q) : n x E = 0 on Ti} is the space of admissible fields equipped 

with the norm: \\E\\W = (||B||?,e,n + ||V x E\\l^. 
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Introducing a space of scalar functions V = {p £ #'($7) : p = 0 on I\} and substituting 

F = Vg (5 € V) into (2.1) , we find that the solution E satisfies the continuity equation 

in the weak sense: 

' (jut + a)EoVq = 0,    V5 € V (2.2) k Ja 
The main idea of the proposed formulation lies in enforcing (2.2) explicitly at the cost 

of an extra unknown function - a Lagrange multiplier p. The resulting mixed variational 

formulation is as follows: 

f Ee w,   Pev 

f -(V x E) 0 (V x F) dx   - f (u2e - jua)(E + Vp) 0 F dx 
Ja fi Ja in o-, 

= -jw[{Jim*°F)dx,    VF€W 
Ja 

[ (LC
2
C-JUJ<T)EO Vqdx        =0    WqeV ( Ja 

Incidentally, we have learned recently that our formulation is equivalent to that of 

F.Kikuchi's for eigenvalue problems [8]. 

We consider W0 = {E 6 W : V x E = 0} and assume that Ü and the boundary 

conditions are such l that: 

£0e^<=>3^V:£0 = V^ (2.4) 

With this compatibility assumption, it can be shown that the variational problem (2.3) 

has a unique solution and the stability properties of the formulation are frequency inde- 

pendent for oj —»■ 0. The stability properties of the standard variational formulation (2.1) 

deteriorate as w -» 0 [4]. 

3    Edge Elements of Variable Order 

What follows is a brief description of scalar and vector triangular elements. The same 

approach is valid for rectangles in 2-D and for prisms, cubes, and tetrahedra in 3-D. 

We associate with a master triangle K a specific order of approximation p = PK which 

may vary from element to element. Additionally, with each of its sides i; we associate a 

possibly different order of approximation p;, i = 1,2,3,    Pi <p- 2 

We introduce two spaces of element shape functions: 

'We emphasize that fi need not be simply connected! 
2In practice, the order of element sides is fixed using the minimum rule, i.e. the order of approximation 

for a side shared by elements A'i, A'2 is set to min{pKl,PK2}- 
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• the scalar space (to approximate the Lagrange multiplier p) 

V(K) =f {q € V*\R) : q\-Si 6 7>w+1(J,-),i = 1,2,3} (3.5) 

• the vector space (to approximate the U-field) 

W{f<) =f {F e PP(A') : F|* o f,- € VPi{si),i = 1,2,3} (3.6) 

where Vn denotes the space of polynomials of order n, and f; is a tangent vector to 

the side s,,i = 1,2,3. 

Both spaces are constructed as spans of hierarchical shape functions: 

• Scalar Shape Functions: 

1. Vertex Shape Functions: 

X.(Ai,A2,A3) = A,-,    i=l,2,3 

where A; are area coordinates 0 < A; < 1 

2. Side Shape Functions: 

X...- = W*'"^""",    * = 1,2,3;    j = (s + l)mod(3);     i = l,...,p, 

3. Middle Node Shape Functions: 

Xmii,(.-+i) = XiX2XzX2'X3:i~',    i = 0,...,(p-2);    i = 0,...,j 

• Vector Shape Functions: 

1. "Tangential" Vertex Shape Functions: 

vertex (0,0) 

vertex (0,1) 

vertex (1,0) 

0i = (Xi,O),    t/>e = (0,-xi) 

$2 = (X2,Xl),       ^3=(0,X2) 

04 = (-X3, 0),       05 = (-X3, -Xs) 

2. "Tangential" Side Shape Functions: 

$',,{.= Xs,iTs;        s = 1,2,3;     i = l,...,ps-l 

3. "Normal" Side Shape Functions: 

Tp"s,i = Xs,ins;        s= 1,2,3;     i = l,...,p-l 

where TS and ns are unit tangent and unit normal vectors to the side s. 

4. Middle Node Shape Functions: 

t* = (xmw..-, 0);   to» = (0, x»*)i       JV = '"-'f-2';   : = !,...,# 
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These vector elements are flexible enough to model the continuous tangential component 
of .E7-field and at the same time allow discontinuity in the normal component of the field 
across the media interfaces. 

The corresponding vector-valued FE approximation is iJ(curl, fi)-conforming provided 
that vector-valued functions defined on the master element are mapped onto the mesh as 
"gradients" by covariant projection. [9, 5, 2] 

The discrete version of compatibility condition (2.4) for Wh and VJ, serves the same role 
as the "inclusion condition" discussed in- [2], sorting out non-physical contributions to the 
numerical solution. 

4    Convergence Result 

It can be proved that there exists a threshold value h0 and a constant C, independent of ft 
such that Vft < ft0 the following estimate holds: 

\\E - Eh\\w <C    inf    \\E - Fhfw, (4.7) 
r h€vv k 

Explicit inclusion of the constraint on the divergence guarantees that constant C remains 
bounded when u> —► 0. When combined with the interpolation error estimates for ftp- 
approximations, estimate (4.7) results in standard ftp-error estimates with exponential rates 
of convergence for analytic solutions. 

5    Numerical Examples 

We illustrate the algorithm with a solution of the benchmark problem of two concentric 
cylinders of dissimilar media. The radii of the cylinders are 1.0 m and 0.25 m, and the inner 
cylinder is off-centered by 0.5 m. The wave numbers of the cylinders are k2 =12.5 m-2 and 
k2 =125 m~2, respectively. A uniform magnetic field H is imposed along the boundary of 
the outer cylinder. The larger cylinder is discretized with 128 quadrilateral elements while 
the smaller one with 128 triangular elements, the order of approximation is uniform, p = 2. 
Figures 1,2 show the contour maps of the x- and y-components of the electric field E together 
with the finite element mesh. 

Finally, Figure 3 presents a preliminary result of ftp-mesh optimization for a simple model 
problem with a polynomial exact solution. At this point we would like to illustrate only the 
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Figure 1: Benchmark solution of the off-centered cylinders problem, the x-component of the 
electric field. 

possibility of both p and A-refinements. 
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L 

Figure 2:  Benchmark solution of the off-centered cylinders problem, the y-components of 
the electric field. 

Figure 3: Solution of a 2D Maxwell equations model problem. An optimal hp FE mesh (left) 
and the corresponding contours of the the x- component of the electric field. Final error 
measured in the energy norm is 0.1 percent of the total energy of the solution. 
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Abstract 

An analysis of programming paradigms for Reduced Instruction Set Computing (RlSC)-based architectures is con- 
ducted by examining the performance of three finite-volume time domain (FVTD) computer codes. Each of these codes 
employs an identical numerical algorithm for solving the Maxwell equations, yet each uses a different program structure to 
do so. One code utilizes a common program structure tailored to traditional vector computers. The second code was derived 
from the first by restructuring the control loops in order to modify the data access patterns of the program. Finally, the third 
code was developed specifically for RISC-based architectures and places particular emphasis on data locality. Details of 
each code implementation are presented. Single-processor performance is analyzed using the hardware performance 
counters of the Silicon Graphics, Inc. R10000 processor on an Octane workstation and an Origin2000 supercomputer. 

1. Introduction 

Today, the largest and most complex electromagnetic scattering and wave propagation simulations are often conducted 
on massively parallel computing platforms. Nearly all of these machines are characterized first by very fast RISC central 
processing units (CPUs) which operate at clock speeds in the hundreds of megahertz, and second by large addressable mem- 
ories on the order of tens to hundreds of gigabytes. Although capacious, the memory systems are quite slow when compared 
to the processing rate of the CPU. This disparity in speed makes a memory fetch a potentially expensive operation, at times 
causing the CPU to wait while data is loaded. In order to alleviate this problem, modern machines typically possess a small 
amount of very fast cache memory which is designed to exploit temporal and spatial locality in data-access patterns. It is 
possible to intelligently fetch data from main memory and load it into the cache so that a large portion of memory accesses 
are satisfied from the fast cache rather than the slow main memory. This has the potential of dramatically improving perfor- 
mance. 

Before the proliferation of massively parallel machines, supercomputing was dominated by vector processors, and thus, 
a large number of scientific and engineering computer codes is use today were originally written for vector machines. A 
well-written vector code can routinely achieve 600-700 million floating point operations per second (Mflops) on a single 
vector processor rated at roughly 950 Mflops [6,9]. Unfortunately, this same computer code may achieve only 20-50 Mflops 
when executed on a RISC processor rated at 500+ Mflops [3,12]. Therefore, rather than measure code performance on 
RISC-based parallel machines merely in terms of parallel speedup and efficiency, it is equally important to assess and opti- 
mize the single-processor performance of that code. 

Although several RISC processors are currently in use in modern supercomputers, the built-in hardware performance 
counters of the SGI R10000 make it an ideal test bed for assessing program performance [13]. Using these counters, the 
present study demonstrates how single-processor performance can be improved through careful program coding. To this 
end, a finely tuned FVTD vector code is executed on an SGI Octane workstation and an Origin2000 (02K) supercomputer 
to simulate the electromagnetic scattering from a simple sphere. A single-zone structured configuration is used, and a vari- 
ety of grid resolutions are examined in order to assess the effect of problem size on program performance. Several alterna- 
tive coding schemes designed to improve performance are then implemented and tested. The first of these coding schemes 
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involves modification to the loop control structures of the vector code. These modifications include loop reordering, loop 
fusion, and cache blocking [4,6]. While these modifications are designed to improve the data locality of the program, they 
do not change the basic operation oriented programming technique of the code. In this technique one operation (or a small 
group of operations) is performed on all cells in the computational domain, intermediate results are stored, and the next 
operation is applied to all cells. This continues until all operations have been performed which are required to update all 
cells to the next time level of the simulation. In contrast to this approach, the second alternative coding scheme is cell ori- 
ented. For this technique, operations are performed exclusively on a single cell of the computational domain until that cell 
has been updated to the next time level. Each of these approaches is discussed in detail in the following sections. 

2. Numerical Methodology 

For the present study, the two Maxwell curl equations are solved using a collocated, cell-centered, explicit FVTD 
scheme. In general curvilinear (£, T|, 0 coordinates, the equations can be written as 

^ + g + |f+|Ö = } (1) 
dt    dt,    dri    3£ w 

where 

Q = {Bx,By Bv Dv Dr Dzf,     } = {0,0,0, -J„ -Jr -Jzf (2) 

E = t,Js + ^yF + %fi,     F = V? + V- + T1ZG,     G = k£ + S/+^G 

The terms l;x, %y, \v ^ T^, T|z, £x> £r and £2 are the nine metrics of the coordinate transformation, and the vectors E, F, 
and G are the flux vectors in Cartesian coordinates which are given as 

E = {0, -D/e, D/E, 0, V^ - By/V-Y, (3) 

F = {Dz/E, 0, -D/E, -B/VL, 0, Bx/u}r,     G = {-D/E, D/e, 0, B/u, B/u, 0}r 

Integrating equation (1) over a general hexahedral volumetric element yields 

dt +£5>-"*w = 0 (4) 

where R = E\ + Fl\ + GK,, nk and Ak are the unit surface normal and surface area of cell face k, respectively, and V is the 
cell volume. Computation of the flux terms appearing in the summation of equation (4) is accomplished via a flux-vector- 
splitting scheme developed by Steger and Warming [10] in which the flux at a cell face is split into positive and negative 
components according to the signs of the eigenvalues of the flux Jacobian matrix. The fluxes for the faces oriented in the \, 
Tl, and t, directions, respectively, are written as 

h = E\(Q\) + E\(Ql) 

fn = ^(ön) + K|(ön) (5) 
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The superscripts L and R in equation (5) denote the reconstructed dependent variables at the left and right sides of the cell 
face, respectively. This reconstruction is performed using a Monotone Upstream-Centered Schemes for Conservation Laws 
(MUSCL) variable extrapolation technique which for an arbitrary face denoted as i+1/2 can be written as [11] 

ef+l/2 = ßi + 0.25[(l-K)(ß,-ßi-i) + (l + K)(ßi+l-ßi)] (6) 

ßf+l/2 = ä-0.25[(l+K)(ßi+l-ßi) + (l-K)(ß, + 2-Ö,+ l)] 

Once the fluxes have been properly computed, the solution is integrated in time using a two-stage, second-order-accu- 
rate Runge Kutta scheme which can be summarized as follows 

Stage 1: 

Stage 2: 

Q  = ß"-^'(£2(ß")-£i(ß") + F4(ß°)-F3(ß") + G6(ß")-G5(ß")) (7) 

ß" + 1 = ^ßVß"-^£2(ß')-£i(Ö*) + f4(ß*)-n(ß*) + Ö6(ß )-G5(ß'))) (8) 

where it has been assumed that cell faces 1 and 2 are oriented in the % direction, faces 3 and 4 in the T| direction, and faces 
5 and 6 in the X, direction. A detailed explanation of this characteristic-based FVTD scheme can be found in references 7 
and 8. 

3. Programming Paradigms 

The three programming paradigms used in the present effort have been classified by the authors for the purpose of con- 
venience as array based, optimized array based, and cell based. The array-based method of programming has been shown 
to be highly effective for vector machines. In fact, the array-based code used in the present study (coded in FORTRAN77 
and hereafter referred to as MAX3D) has demonstrated a data processing rate of 610 Mflops on a single processor of a Cray 
C90 [6]. The main data structure in MAX3D is the three-dimensional array, and the primary control structure is the DO 
loop. The code solves equations (7) and (8) by performing a series of sweeps through the computational grid. The first 
sweep computes all \ face fluxes, the second computes all T| face fluxes, and the third computes all £ face fluxes using 
equations (5) and (6) appropriately. A simple two-dimensional sketch of the process appears in Figure 1. Unfortunately, this 
approach exploits neither temporal or spatial locality. For example, dependent variable data which is used in the positive 
flux calculation is used again in the negative flux calculation, but not before other required calculations have been per- 
formed. Thus the data has most likely been flushed from the cache before is it needed again. Similarly, depending on the 
direction of the data traversal through the arrays, data which is moved into the cache as a result of a cache miss may be 
flushed before it is actually used. For these reasons, this type of program structure, although very common, is expected to 
have poor cache performance. 

The second type of program structure is a modification of the first. The basic data structure remains the three-dimen- 
sional array; however, the DO loop control structures are modified to improve data locality. In effect, the loops are con- 
structed so that the sweeps are performed piece-wise through the arrays. This increases the likelihood that previously cached 
data will be found m cache when required. The drawback to this approach is it is highly dependent on the cache structure of 
the CPU, and optimizations which improve performance for one CPU may actually degrade performance on another [2]. 
The techniques for performing this type of modification to existing vector codes are documented in references 1 and 4. The 
optimized array-based code used in the present study is hereafter referred to as MAX3DO. 

810 



(1) (2) 

Sweep through Q to extrapolate for E 
Store E+ for all £ cell faces 

Sweep through Q  to extrapolate for E" 
Store E" for all t, cell faces 

Sweep through £* and E~ to compute £ 
Store E for all % cell faces 

(4) 

steps (1) to (3) for n and C 
to compute P and G fluxes 

Sweep through E, F, G, and Q 
to compute Qn+1 

Figure 1: Array-based coding procedure 

The third programming technique is fundamentally different than the first two. Instead of performing a series of sweeps 
through large arrays and storing intermediate results, the code computes the fluxes for all six faces of a given cell using 
equations (5) and (6), and then updates that cell using equation (7) or (8). This process is then repeated for each cell in the 
computational domain. A two-dimensional example of this process is depicted in Figure 2. Because all calculations are per- 
formed on a single cell, a high degree of temporal locality is achieved. Furthermore, because the six dependent variables for 
each cell are stored contiguously in memory, the code exhibits good spatial locality as well. This cell-based computer code 
was developed in C, and is hereafter referred to as CHARGE. 

4. Testing Procedure 

Single-processor performance of all computer codes was assessed on an SGI Octane workstation and the 02K super- 
computer. The Octane had two 195 Mhz R10000 processors, each with 1 megabyte of secondary (L2) cache, and access to 1 
gigabyte of shared memory. The Origin2000, on the other hand, was a 32-processor distributed-shared memory machine. 
Each processor had a 4 megabyte L2 cache, and the machine had a total of 16 gigabytes of memory. Both machines utilized 
the IRIX version 6.4 operating system. 

Performance metrics were obtained using the SGI-supplied perfex utility in conjunction with the built-in hardware per- 
formance counters of the R10000 processor [4,13]. Although an exhaustive study of compiler optimizations was not con- 
ducted, several options were examined in order to attempt to maximize performance of each of the three codes. For 
CHARGE, the options which yielded the best performance were -03 -lNUNE:must=<fcn list> ■OPT:IEEE_arithmetic=3 - 
64 where <fcn list> was the list of functions to be inlined by the compiler. Because the performance counters count the mul- 
tiply-add instruction of the R10000 as a single floating-point operation, a more accurate Mflop performance assessment was 
obtained by adding-the compiler option -TARC:MADD=off to disable the combined multiply-add instruction. Adding this 
option was found to degrade the speed of the code only slightly. Compilation of MAX3D and MAX3DO was performed 
using the options -03 -r8 -OPT:IEEE_arithmetic=3 -TARG:MADD=off. Note that the double precision flag was not used 
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■ Current cell 

Use Q" data from cells in 
computational stencil to compute 

all cell face fluxes 

Repeat for each cell 

Figure 2: Cell-based coding procedure 

Use Q  data from current cell 
and computed fluxes to update 

cell to 5 

for CHARGE since the variables are explicitly declared as type double within the code. In order to avoid cache thrashing, 
care was taken to ensure that no array dimensions nor any product of array dimensions within MAX3D were a power of two. 

The perfex utility was invoked using the command perfex -a -y <executable name>. The -a option enables statistical 
sampling of all counters. In order to ensure accuracy of the reported results, all timing runs were repeated at least five times, 
and the best performance was reported. In practice, most performance metrics were found to vary by less than 3 percent. The 
metrics which are reported here include Mflops, primary (LI) cache hit rate, secondary L2 cache hit rate, and LI cache line 
reuse. These metrics are defined by SGI in their on-line man pages as follows: 

Mflops: graduated floating point instructions / program run time 
LI cache hit rate: 1.0 - (LI cache misses / (graduated loads + graduated stores)) 
L2 cache hit rate: 1.0 - (L2 cache misses / LI cache misses) 

LI cache line reuse: (graduated loads + graduated stores - LI cache misses) / LI cache misses 

All performance results presented here were obtained on dedicated machines so that timing was completely unbiased by 
fluctuations in machine loading. 

5. Results 

Before the performance of the three codes was examined, the accuracy of each code was assessed by comparing the 
computed result of the bistatic radar cross section of the sphere against the analytical Mie series solution [5]. A sample result 
is depicted in Figure 3 for the case of 4a = 10.47 where a is the radius of the sphere and k is the wavenumber of the incident 
field. All three codes produced identical results which agree very well with the theoretical solution. 

The floating-point performance of each of the codes is presented in Figure 4. MAX3D fits entirely in cache for problem 
sizes on the order of a few thousand cells. In this scenario, the code performs well at between roughly 110 and 115 Mflops 
on both the Octane and the Origin. As the problem size increases, however, and the problem no longer fits entirely in cache, 
the code suffers a dramatic performance degradation. Furthermore, the drop in performance occurs quite suddenly. For 
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Figure 3: Comparison of computed and theoretical radar cross section of perfectly electrically conducting sphere: L) 
W polarization, R) HH polarization 

example, on the Octane, code performance drops from approximately 115 Mflops at 2000 cells to less than 50 Mflops at 
8000 cells. At 64,000 cells, the code performance has dropped to 30.8 Mflops, only 27 percent of it's peak in-cache perfor- 
mance level. Performance of the code on the Origin is similar with the notable exception that the performance drop-off point 
is delayed due to the increased size of the secondary cache. The larger cache, however, ultimately does not improve the per- 
formance for large problems, and the performance drops to only 27 Mflops for a problem size of 512,000 cells. It should be 
noted that for a typical three-dimensional problem, cell counts of a million or more cells are not uncommon. It is therefore 
clear than the standard array-based coding scheme does not provide acceptable performance levels on the R10000. 

The abysmal performance of the standard array code is improved dramatically by loop optimizations as shown in Fig- 
ure 4. Although the performance still decreases as the problem size increases, the reduction is not nearly as dramatic with 
the code still achieving approximately 80 Mflops for the largest problem size. This represents a three-fold improvement 
over the unoptimized code. Although the performance of the code has been improved dramatically, the code still exhibits a 
dependency (although diminished) on the size of the cache. This dependency on cache size can be frustrating when attempt- 
ing to optimize a code to run on different processor architectures. 

The most predictable performance of the three codes was demonstrated by CHARGE. Although not achieving quite the 
performance of the other codes for the extremely small problems, it showed very little performance degradation with 
increasing problem size. In fact, performance between the largest and smallest problems varied by only approximately 6 
percent. Furthermore, any differences in code performance on the Origin and the workstation were almost negligible. Thus, 
CHARGE exhibits virtually no dependence on processor cache size. Although additional performance analysis has yet to be 
completed, it is believed that the code will perform similarly for machines such as the Cray T3E and IBM SP which have 
caches on the order of a few hundred kilobytes. This belief is supported by examining the cache performance of the three 
codes more closely. 

The data for the L2 cache hit rate of the three codes is presented in Figure 5. The extremely poor performance of 
MAX3D is clearly evident in the figure. It is apparent from the figure that the data fits entirely into a 1MB cache up to prob- 
lem sizes of approximately 2000 cells and into a 4MB cache up to a problem size of roughly 8000 cells for both array-based 
codes. Once the data spills out of cache, however, MAX3D shows a rapid cache-hit-rate reduction to approximately 50 per- 
cent on both the Octane and the Origin. This is far below the desired 95 percent hit rate often quoted for good performance 

813 



° 
125 

- MAX3D Octane 
- MAX3DO Octane  E>— 

—e— - MAX3D002K 
100 i          A 

a 
o 

2 
75 

50 

25 

■  ■  ■ 
" 

1
 

■ 
, 

■ 
, :

 . ...i      
10* 

uii 
-a  CHARGE Octane 
-A  CHARGE 02K 
-V  MAX3D Octane 
-B  MAX3D02K 
-d  MAX3DO Octane 
-0   MAX3DO02K 

i4x s»- 10* 
Grid Cells Grid Cells 

Figure 4: Floating-point performance as a function of 
problem size 
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[1]. It is apparent that increasing the size of the cache for the unoptimized code simply delays the onset of the performance 
reduction and does not change the performance of the code for realistically sized problems. 

Although the cache-hit performance of the unoptimized code seems to directly reflect the data in Figure 1, similar con- 
clusions cannot be drawn when comparing the L2 cache hit rates of CHARGE and MAX3DO. Here, MAX3DO outper- 
forms CHARGE for all problem sizes. This would seem to be in contrast with the Mflop results contained in Figure 4; 
however, the differences can be resolved by examining the LI cache hit rates of the three codes as presented in Figure 3. 
Because the LI cache performance of the codes was nearly identical for both the Octane and the Origin, only the Origin data 
is presented in the figure. Again, MAX3D exhibits relatively poor performance with an LI cache hit rate varying between 
approximately 0.68 and 0.77. MAX3DO performs better with hit rates varying between 0.86 and 0.89. On the other hand, 
CHARGE exhibits extremely good LI cache access with a nearly constant 0.99 cache hit rate. This indicates a very high 
degree of data locality since most accesses can be satisfied by the on-CPU 32K cache, a situation even more desirable than 
the data residing in L2 cache. This clearly indicates the high degree of data locality in the code, and reinforces the belief that 
the code should perform similarly on machines having very small caches. A final substantiation of this claim comes from 
examining the data in Figure 4 which shows the LI cache line reuse. This metric measures the number of times a piece of 
data, on average, is used once brought into LI cache. The data shows that CHARGE utilizes LI cache data between 71 and 
113 times before it is flushed from the cache. Contrast this to the reuse rates of roughly 2 to 3 times for MAX3D and 6 to 9 
times for MAX3DO, and it becomes clear why the floating-point performance of CHARGE remains essentially constant 
over a wide range of problem sizes. This is especially promising given the fact that no processor-specific optimizations were 
made during code development. 

6. Concluding Remarks 

Three separate FVTD computer codes developed at the Air Force Research Laboratory have been analyzed for perfor- 
mance on the SGI RIOOOO processor. The traditional vector style of programming was found to underperform two other pro- 
gramming styles more tailored to data locality. The vector style of programming demonstrated a dramatic reduction in 
performance as the problem size increased. In contrast, the code using a cell-based programming approach was found to 
have extremely good performance across a large range of problem sizes. This approach also demonstrated virtually no 
dependence on the processor's cache size. This makes the approach attractive from the perspective of developing a simula- 
tion environment which is capable of achieving high levels of performance on a variety of architectures. It is precisely this 
type of flexibility that is a fundamental requirement for developing a useful tool for conducting complex time-domain elec- 
tromagnetic simulations. 
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1.   Introduction 

VOLMAX is a three-dimensional transient vo/umetric 
Maxwell equation solver that operates on standard rec- 
tilinear finite-difference time-domain (FDTD) grids, 
non-orthogonal unstructured grids, or a combination of 
both types (hybrid grids) [1-3]. The algorithm is fully 
explicit. Open geometries are typically solved by em- 
bedding multiple unstructured regions into a simple 
rectilinear FDTD mesh. The grid types are fully con- 
nected at the mesh interfaces without the need for com- 
plex spatial interpolation. The approach permits de- 
tailed modeling of complex geometry while mitigating 
the large cell count typical of non-orthogonal cells such 
as tetrahedral elements. To further improve efficiency, 
the unstructured region carries a separate time step that 
sub-cycles relative to the time-step used in the FDTD 
mesh. A cross section of the interface between finite- 
volume time-domain (FVTD) and FDTD grids is shown 
in Fig. 1. The "wrapper layer" is a hexahedral region 
that encloses the unstructured grid and provides nodal 
connectivity to the surrounding FDTD mesh. The 
wrapper is constructed automatically based on the un- 
structured-grid topology. The unstructured region may 
consist of a single rectangular block, or be of a multiple, 
block-on-block form. 

Wrapper Outer 
Boundary 9— ~9~ -9 

WRAPPER LAYER O 0 f- ■4- -A.- --v 
Wrapper Inner 

Boundary                | 

1 
-0-- 

1 

1   i 
--6 

°r ~°^\ ^ 
•   Primary Node 

O  Dual Node 
o 

.,               Primary Edge 

  _    Dual Edge 

FVTD REGION 

FDTD REGION 

Fig. 1. The hybrid grid interface. 

As shown in Fig. 1, VOLMAX is based on a staggered 
grid formulation. Primary and dual grids are used. 
When the unstructured grid consists exclusively of rec- 
tangular hexahedral cells, the field advancement is 
identically FDTD in nature, although the cells are refer- 
enced in an unstructured (indirect) manner. Note that 
the wrapper layer consists of rectangular cells for its 
primary grid, but the dual cells on the wrapper inner 
boundary are generally non-orthogonal. As a conse- 
quence, the wrapper layer is common to both the FVTD 
and FDTD grids. For the case that the unstructured-grid 
consists of uniform rectangular elements, the algorithm 
is second-order accurate both in space and time. 

The field advancement scheme for the VOLMAX hybrid 
mesh is the following. The electric fields in the FDTD 
region are initially advanced based on time step, Af,. 
On the outer boundary of the wrapper, the tangential 
electric fields are second-order time interpolated to 
provide a Dirichlet boundary condition for the FVTD 
region. The electric and magnetic fields in the FVTD 
region are advanced an integral number of sub-time 
iterations relative to At,. At the completion of the sub- 
cycling, the tangential electric fields on the inner 
boundary of the wrapper are used to provide a Dirichlet 
boundary condition to complete the magnetic-field ad- 
vancement in the FDTD region. An alternative scheme 
could map the magnetic fields in the wrapper layer into 
the respective FDTD locations after the FDTD mag- 
netic fields are advanced in time. 

VOLMAX is currently integrated to the commercial 
CAD package SDRC I-DEAS [4], Solid model design, 
mesh generation, and post-processing are all accom- 
plished through the I-DEAS interface. Electromagnetic 
properties, such as voltage sources, local boundary con- 
ditions, current observers, input and output ports, slots, 
wires, etc., are implemented by assigning nodal attrib- 
utes to the desired property. The original I-DEAS grid 
file is input into the VOLMAX preprocessor, PreVol, 
which builds the wrapper layer, and the primary and 
dual grids. Grid construction by PreVol is accom- 
plished at the rate of 50,000 to 100,000 cells/minute on 
a single, high-end processor.   Construction time scales 
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linearly with cell count. The basic user interface for 
PreVol in shown in Fig. 2. Typical inputs include the 
simulation domain (interior/exterior), node attributes 
(sources, observers, etc.), and (optionally) the topology 
of the unstructured region(s). 

Fig. 2. The basic PreVol interface. 

The overall design and simulation procedure used in the 
VOLMAX system is outlined in Fig. 3. The closed loop 
permits an adaptive cycle based on simulation results. 

hedra and embedded in FDTD hexahedra is shown in 
Fig. 4. Note the good agreement with the Mie-series 
solution even as the resolution of the external FDTD 
mesh falls below 10 cells/wavelength (X). A contour 
rendering of the surface current-density shortly after a 
Gaussian pulse has hit the sphere is shown in Fig. 5. 

16+08 2&08 3E+08 4E+08 5E+08 6E*08 7E+08 BE+08 
Frequency (Hz) 

Solid-Modeling. 
Mesh Generation. 
Post-Processing. 

SDRChDEAS 

t-DEAS Translation. 
Wrapper Construction. 

Primary I Dual Grid 
Generation. 

PreVol 

ft 
EM Field Simulation. 
Output Generation. 5 

Fig. 3. The simulation cycle. 

For demonstration purposes, application of VOLMAX is 
made to a cylindrical resonator and scattering by a sim- 
ple conducting sphere in Section 2 of the paper. In 
Section 3, two methods for modeling sub-cell wires on 
arbitrary non-orthogonal cells are introduced. In Sec- 
tion 4, a generalization of the hybrid thin-slot algorithm 
(HTSA [5]) to arbitrary cell types is also introduced. 
EMC/EMI applications are made in Section 5. Con- 
cluding remarks are made in Section 6. 

2.   Application to Canonical Geometries 

The hybrid-grid, far back-scattered field from a 0.5 m 
radius, perfectly conducting sphere gridded with tetra- 

Fig. 4. The far, back-scattered field from a 
0.5 m conducting sphere. Rf denotes 

distance. Hybrid-grid solution. The 
transient response is inset 

Fig. 5. The early time surface current density 
on a conducting sphere. 

An extruded hexahedral element mesh for a simple cy- 
lindrical resonator is shown in Fig. 6. Random edges 
were selected for the source and observer. A Gaussian 
pulse excitation was used. The internal transient re- 
sponse demonstrating stability is shown in Fig. 7. The 
first few TM resonances are shown in Table 1. 
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Fig. 6. Cylindrical resonator with an average 
hexahedral edgelength of 5 cm. The 
radius is 0.5 m and the height is 1 m. 

Time (s) 

Fig. 7. Internal electric field after 50,000 time steps. 

TABLE 1. Resonances of Cylindrical Resonator 

Mode TheorvlMHzl VOLMAX (MHz) 

TM011 274.12 274.01 
TM012 377.56 376.48 
TM111 395.21 39353 
TM112 47Z86 47135 
TM013 504.S7 500.95 

3.  Sub-Cell Wire Modeling 

The ability to model features that are small relative to 
the global cell size is important in electromagnetic 
simulations. By tapering an unstructured mesh, it is 
possible to resolve small detail; however, the increase in 
cell count and the reduction in time step can be prohibi- 
tive. 

Relatively simple algorithms to resolve small wires on 
rectangular FDTD grids have been developed [6,7]. 
The algorithms are accurate but require that the wire 
conforms to the rectangular mesh. This can create 
problems for applications such as cellular phones that 
may demand the phone model to be tilted relative to the 
human head model. 

Two algorithms are briefly presented here that enable 
wires to run arbitrarily along edges of an unstructured 
mesh. The first method embeds a transient integral 
equation into the unstructured mesh, whereas the second 
method is a generalization of the original FDTD scheme 
to non-orthogonal cells. A similar extension of the 
FDTD scheme was presented in [8], but the method was 
only applied to linear wires on prismatic cells. The 
technique in the present paper further extends and ap- 
plies the method to curved wires on tetrahedral meshes. 

3.1 Integral Equation Thin-Wire Model 

A transient integral equation (IE) is used to model the 
topology of the wire. The wire is defined in the original 
solid model and is meshed using one-dimensional beam 
elements. Within VOLMAX, the IE operates in one of 
two modes. The first mode is an exclusive wire mode 
that is coupled to a free-space volumetric mesh. In this 
mode, VOLMAX is similar to a transient version of the 
frequency-domain NEC [9] code, with the added benefit 
of field visualization into the volumetric region. In the 
second mode, the IE operates in a field-feedback con- 
figuration that enables solid geometry to reside in the 
unstructured mesh. This algorithm is similar to the hy- 
brid thin-slot algorithm [5] in that local vector fields 
computed in the volumetric region are injected back 
into the IE at each time step. These fields correspond to 
reflections from non-wire geometry and represent addi- 
tional sources driving the IE. The field-feedback mode 
has been found to be most effective for free wires de- 
fined on hexahedral cells, and for wire radii that are a 
small fraction of the surrounding edge lengths that sup- 
port the wire. 

i, («;) 
E, : V, 

l <4—-   Primary/Wire Node 

. Primary / Wire Edge 

Local wire-grid edge 

Primary edge on volumetric mesh 

1/       Average connecting edge vector at node, / 
t 

E;       Electric field at primary (wire) node, / 

Vj       Voltage at primary (wire) node, j 

Fig. 8. Relationship of local wire-grid to volumetric 
primary mesh. Dual cells (not shown) 
enclose primary nodes. V is the wire path. 

A section of a simple curved wire is shown in Fig. 8. 
The IE solution uses overlapping piecewise-linear basis 
functions that are centered at the nodal positions. Only 
the governing equations are presented here. Numerical 
solution details for the IE are similar to Refs. [10,11]. 
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The governing integral equation for the wire system, 
including the provision for volumetric-mesh feedback, 
is the following [cf. [11] for the free space case]. 

£„>■ ^-(E'^+VE'^ 

?^r}rfni';(/',T)[c(r,r';a)-vG(r,r';I!8)]- 

1-Vj dlVf   [l l(l»][G(r1r';«)-vc(r1r';flo)] (1) 

where reT, withTthe wire path, T = r-|r-r \lc, c 

denotes the speed of light in vacuum, / denotes the cur- 
rent on the wire, E'"c denotes an impressed source on 

the wire, and E* denotes an average vector electric 

field from the volumetric grid local to the wire. 
V = 0 sets the equation to operate in a free-space (no 
feedback) mode, and v = 1 sets the equation to operate 
in a feedback mode from the volumetric grid. The free- 
space Green's function is denoted by G() [11], a de- 
notes the wire radius, and a„ denotes an effective radius 
for matching the integral equation solution to the volu- 
metric solution local to the wire. Note that the volumet- 
ric solution for the electric field on the wire will not be 
identically zero because the solution represents an aver- 
age value for the electric field over the dual cell con- 
taining the wire node; consequently, a„is typically taken 
to be 'A the local dual-cell diameter. 

Dual face, p, on 
Dual cell,;' 

Fig. 9. Wire edge piercing dual face. 

The integral equation solves for the current at the wire 
(primary) nodes. Coupling to the volumetric grid re- 
quires the wire current to be defined on primary edges. 
Let the average wire current on the p-th primary edge 
be denoted by Ip. Coupling to the volumetric grid is 

then approximated through the equation (cf. Fig. 9) 

e°T,i E^ Wd\-I, t-'j.. 
(2) 

To ensure stability, the time-averaging scheme intro- 
duced in [1] is applied to the time-integration used for 
Eq. (2). The spatial integration is over the dual face 
pierced by primary edge, s*. The normal to this face is 

denoted by n' p, and the face area is denoted by A' p. 

Ep represents the electric field normal to the dual face, 

while fi' denotes average magnetic fields on the dual 
edges enclosing the face. A more detailed discussion of 
the grid topology can be found in [1]. 

The vector electric fields at primary nodes, E', are 

approximated using a least-squares fit to the face- 
normal electric fields (Ep). The average electric field 
projected in the primary edge direction is defined by 

E'.S*=-(E;. + EJ)-S» + 

*,-}(E}+Ei)-},](»;,-.;) (3) 

The integral-equation technique is demonstrated by 
examining scattering by three curved wires in free 
space. The simulation is performed two times. In the 
first case, v = 0 in Eq. (1) is used, whereas in the sec- 
ond case, v = 1. Because the geometry involves only 
wires, the results of the two simulations should be iden- 
tical. A contour plot for the electric-field distribution 
local to the wires is shown in Fig. 10. A Gaussian pulse 
is incident normal to the plane containing the wires. 
The far, back-scattered field comparing the two simula- 
tions is shown in Fig. 11. The wires were locally en- 
capsulated in skewed hexahedral elements that were 
embedded in tetrahedra. The unstructured-grid block 
was then embedded in a cubical FDTD mesh out to the 
grid termination using 5-cm cells. 

3.2 Partial Differential Equation Thin-Wire Model 

Using a partial differential equation (PDE) model, or 
equivalently, a transmission-line (TL) model, the wire 
electric current is defined on primary edges, while the 
voltage (or charge) is defined at primary nodes. This 
formulation has a more natural correlation with an 
FDTD or FVTD volumetric grid than the IE method, 
and facilitates the connection of wires to solid geome- 
try. In both models, wires are defined using one- 
dimensional beam elements. 
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Fig. 10. Scattered electric field surrounding three 
wires. The wire radius was 2.5 mm and the 
average edge length was 5 cm. An FDTD 
grid encloses the unstructured grid. 

Z5E+08 5E+08 7.5E+08 
Frequency (Hz) 

Fig. 11. Normalized, far, back-scattered field from 
the wire system with feedback on (v=l), 
and off (v=0). Rf denotes distance. 

vr=vf- Ar„ 

C. 1, 
(/-'%„-/r'%t)       (5a) 

xn+3/2 _ "p  rn+1/ 
'P A      'P 

1 [(vr-v?] -fi'-ii (5b) 

—R„ 

c„. =- 2%E, 
K, 

Ar„        2 

Vp'^and Rp denote an impressed voltage source and 

resistance, respectively, on the p-th primary edge, fij 

and Sj denote average permeability and permittivity, 

respectively, at the j-th primary node, a is the wire ra- 
dius, and A tu is the time-step in the unstructured mesh. 

A superscript, n, denotes time iteration. 

£,- and £' • s* represent critical quantities that deter- 

mine the accuracy the of PDE thin-wire method on a 
random unstructured mesh. £■ represents an average 

distance between the j-th primary (wire) node and the 

(non-wire) nodes that locally surround it. £' • s* repre- 

sents an average of the non-wire-node vector electric 
fields surrounding the endpoints of the p-th primary 
edge, projected onto this edge. Figure 12 shows a two- 
dimensional representation of the geometry. 

The governing equations along an arbitrary path defined 
by the spatial variable, I, are the following [cf. 6,7 for 
an FDTD implementation]: 

di    w dt 

4-V = -L„^- + El s + V"'"c -/R 
dl at 

(4a) 

(420 

/ represents current while V denotes voltage. V = 0 
when the wire terminates on a conductor, whereas / = 0 
at an open-end termination. The "in-cell" capacitance 
and inductance are denoted by Cw and L„, respectively. 

With reference to Fig. 8, an explicit algorithm is 

Gj and E' ■ s* are computed as follows (cf. Fig. 12). 

The summations are taken over the valid primary nodes 
or edges that support the wire node. A nearly uniform 
nodal distribution with constant f j (taken at the source) 

has been found, to date, to provide the best accuracy. 

The wire current at each time iteration is obtained by 
solving Eqs. (5a, b). The current is injected onto the 
volumetric grid in a manner similar to Eq. (2). 
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For demonstration, the input admittance of a wire-loop 
antenna defined on a tetrahedral mesh is examined. The 
loop diameter is 15 cm and the wire diameter (2 a) is 
0.5 mm. The loop is modeled on tetrahedral elements 
with an average edge length of 1.08 cm. The unstruc- 
tured mesh is embedded in a uniform FDTD mesh with 
1-cm cubical elements. A Gaussian-modulated sinusoi- 
dal voltage source is impressed on the wire. The planar 
nodal distribution surrounding the beam elements used 
to mesh the wire is shown in Fig. 13. The transient 
driving-point current using the PDE thin-wire algorithm 
is shown in Fig. 14. A comparison is made with the 
previous IE thin-wire algorithm for the case v = 0 (no 
feedback). As seen, the results are virtually identical. 
The input admittance is shown in Fig. 15. 

* 
hi 

Primary node used in computing average electric field 
Primary edge length between the j-th primary (wire) node 
and the l-lk support node 

Valid primary edges supporting wire nodes 

g. 12.   Primary edges and nodes used in 
computing average electric fields and 
edge lengths supporting wire nodes. 

path on a locally planar region. The requirement of 
local planarity is a result of applying the equivalence 
principle [15] in conjunction with the free-space 
Green's function. 

Fig. 13. The nodal distribution in the loop plane 
of the unstructured grid. 

PDEThtiWfn 
Integral Equation 

aquation rosult on nod*. 

Ave. Tetrahedral Edgelength = 1.07 cm: 
Loop Diameter= 15 cm 

Fig. 14. The loop transient driving-point current 

4.   Sub-Cell Slot Modeling 

Several algorithms have been proposed to model nar- 
row apertures on rectangular FDTD grids [5,6,10,12], 
However, none of the algorithms have been extended to 
unstructured grids with non-orthogonal cells. Such an 
extension is made in this section for the hybrid thin-slot 
algorithm (HTSA) [5]. The HTSA uses a transient in- 
tegral equation to model the slot physics. 

Similar to the IE thin-wire algorithm described in Sec- 
tion 3.1, the HTSA also uses a field-feedback technique 
to account for the presence of solid geometry in the 
neighborhood of the slot. The original algorithm for 
linear aperturesjias been shown to be accurate, but 
long-term stability is dependent on the implementation 
and the equivalent wire radius [10,13,14]. The gener- 
alized HTSA presented in this section improves on sta- 
bility issues while permitting slots to follow an arbitrary 

o 
I0' 
8 

t 

1 T-r-r" i-r- 
:   2a=0.5 

|'i   .   i   ■   I   i 
mm 

11,1111 

-onductance) 
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(Conductance)" 
(Susceptance) ! 

.0075 
D 

PDE Thin Wire (5 
Integral Equation 
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.0060 "   il 
'■ 

0025 ■$A 

-    tf 

trie V * 0 y 
'.» 0000 

0025 

' 1   ,   ,   .   . 

Ave. Tetrahedral Edgelength 
Loop Diameter»15 cm 

= 1 -0B cm 

i   1   i   i   i   i " 
1.5E+09        2E+09 
Frequency (Hz) 

Fig. 15. The loop input admittance. 
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A slot in a perfectly conducting plane is shown in Fig. 
16. Fields are assumed to be incident from both region 
1 and region 2. A derivation of an IE for the magnetic 
current can be found in [10,11]. The HTSA generalizes 
the standard slot BE by utilizing the total magnetic field 
from the volumetric grid as a source for the IE. This 
field includes not only the usual "short-circuit" terms 
required by the standard IE, but also includes the slot 
radiation and any additional scattered fields due to finite 
geometry. The technique is particularly well suited to 
FDTD, or FVTD formulations that use interleaved 
grids. The resulting equation is given by [10] 

4      dt 4      dt 

1   3 
j^\dll\ K{I\T)[G{T,T-,O)-G(T,T ■,*,)}- 

1-Vj dl'V) •[.' fc{l ,T)\G{T,T ;a)-G{r,r-a,)]   (6) 

REGION 1 (behind slot plane) 

Primary Face out of Slot Plane 
\ Jf (Face, q, on primary cell, n ) 

-      p  v P ' 
(S 

h j   fK A /Primary Face out of Slot Plane 
*  ^r J^o~-i^     (Face, /, on primary cell, i) 

«Z h        n     (Facenormal) 

(In plane) Primary Edge in Slot Plane 

REGION 2 (in from of slot plane) 

Fig. 16. Arbitrary slot path in a plane. 

where r e V, K denotes the magnetic current, and G() 
denotes the free-space Green's function. The equiva- 
lent thin-wire radius, a, for the thin slot is 

a = (w/4)exp[-?rrf/(2w)] [16], where w denotes the 

slot width and d denotes the slot depth. The total mag- 
netic fields in region 1 and region 2 of the slot plane are 

denoted by H'1, and H*2, respectively. Local to the 
slot, they are computed by averaging over the vector 
magnetic fields located at the dual nodes that surround 
appropriate dual faces in region 1 and region 2. a0 is 

defined to be an average distance from the slot to the 
surrounding local magnetic field locations (dual node 
locations). Other parameters are as defined for Eq. (1). 
Numerical solution details for the IE can be found in 
[10,11]. 

Faraday's law is used to apply the magnetic current 
onto the volumetric grid. Only the primary faces that 
have a single edge on the slot plane, and only a single 
slot node, are used with the appended magnetic current 
(cf. Fig. 16). For the l-th face on the i-th primary cell, 

»OT, "'^=-*E ■A±^rr~IT at Ah f~k 2    I  ,J 
(7) 

The "+" sign is for region 1, whereas the "-" sign is for 
region 2. Note the Vz scaling factor applied to the mag- 
netic current. This is because the slot is defined to lie 
along primary edges. Thus, the contribution due to the 
slot is apportioned to the primary faces that lie "above" 

and "below" the aperture. This is a distinction relative 
to previous thin-slot algorithms that assume the aperture 
falls at the midpoint of the primary edge that passes 
through the slot. Defining the slot on primary edges 
enables it to be included in the original solid model and 
meshed using beam elements. Because beam elements 
are used for both wires and slots, the nodes associated 
with the beam elements are given either a slot or wire 
attribute to activate the appropriate algorithm within 
VOLMAX (cf. PreVol, Section 1). Consequently, mul- 
tiple wires and slots can reside within the same mesh. 

The vector magnetic field local to the slot is approxi- 
mated by forming a least-squares fit to the face-normal 
magnetic fields. The vector field projected along dual 
edges is defined similar to Eq. (3) [1]. An example of 
thin-slot/thin-wire coupling is provided in the following 
section. 

5.   EMC/EMI Applications 

Electromagnetic compatibility (EMC) and electromag- 
netic interference (EMI) issues are important in system 
applications. Effective shielding is often crucial to sur- 
vivability and/or vulnerability requirements. Two 
shielding enclosure examples are presented in this sec- 
tion. These examples were previously investigated in 
[13,14] to examine the accuracy of rectilinear FDTD 
thin-wire and thin-slot algorithms in simplistic, but re- 
alistic geometry. The FDTD simulations were com- 
pared to measurements with good agreement over the 
simulation bandwidth. The geometry studied con- 
formed to a rectangular grid.   Using rectilinear FDTD 

822 



on a rotated geometry, however, can lead to significant 
errors in slot, wire, and cavity resonance locations [10]. 
In the following, the rectangular shielding enclosures 
are modeled using a tetrahedral mesh in conjunction 
with the generalized thin-wire and thin-slot algorithms. 
This largely removes FDTD geometrical constraints. 

The first example is a closed rectangular resonator that 
is driven by a 50 £2 source/coaxial line. The geometry, 
with partial mesh, is shown in Fig. 17. A thin-wire was 
used with a 50 £2 termination at the top of the resonator 
and a 47 £2 termination at the bottom of the resonator. 
The diameter of the wire was 0.16 cm. The entire ge- 
ometry was built as a solid model and automatically 
meshed with linear tetrahedral elements. Construction 
time was approximately 15 minutes using a Sun Ultra 
SPARC computer. Because the geometry represents an 
interior problem, there was no need to embed the un- 
structured grid in an FDTD mesh to form the hybrid- 
grid configuration. 

The power delivered by the source (calculated at the 50 
£2 impedance) is shown in Fig. 18. The VOLMAX 
simulation used the tetrahedral mesh, with an average 
edge length of 1.1 cm, in conjunction with the PDE 
thin-wire algorithm (Section 3.2). Comparison with 
measured data is made [13]. The power available from 
the source was 2.5 mW. The agreement is generally 
good. A slight (< 1%) shift in cavity resonances at ap- 
proximately 1.4 GHz and 1.5 GHz is seen. It was noted 
in [13] that minor changes in the wire radius affect all 
resonance locations. No effort was made in Fig. 18 to 
"tune" the results; the physical wire diameter of 0.16 cm 
was used. 

WVo DiamaWr ■ 0.16 cm 
Avi. T«ralwdral EdgtfengUi -1.10 cm 

.«,00011m» Hemfona hi Unsttvcturad Mesh 

■ Tetrahedral Mesh 
Measured Date 

■O 
0.7       0.8       0.9 1 1.1        1.2       1.3       1.4       1.5       1.6 

Frequency (GHz) 

Fig. 18. Power delivered by source 
for Fig. 17 geometry. 

The second example is similar to the first, but adds a 
narrow slot, with depth, to the shielding enclosure and 
shifts the wire location (cf. Fig. 19). Because this is 
now an open geometry, a full hybrid-grid implementa- 
tion is used in VOLMAX. The interior of the enclosure 
is automatically meshed with linear tetrahedral ele- 
ments, as well as a 1-cell-layer external to the enclo- 
sure. To accomplish this simply requires "partitioning" 
the enclosure geometry out of a slightly (1-cell) larger 
rectangular container-a task that is easily done within 
the CAD system. This extra layer of tetrahedral ele- 
ments enables the wrapper layer to be constructed by 
PreVol (cf. Section 1) for direct interface to a cubical 
FDTD grid that is used to terminate the overall mesh. 

..30-     .>swgs&ssfc,.. 

Fig. 17. Closed rectangular shielding enclosure 
with thin wire. 50 £2 termination at top 
of wire (not shown). Units in meters 
unless noted. Tetrahedral meshed. 

Fig. 19.   Enclosure with wire and slot Wire 
terminated as in Fig. 17. Slot width, 
0.1 cm, slot depth, 0.05 cm, slot length, 
12 cm. Wire diameter, 0.16 cm. Units 
in meters unless noted. Tetrahedral 
meshed. 

823 



The power delivered by the source is shown in Fig. 20. 
Comparison with measured data is made [14]. The cal- 
culation is again made at the 50 Q load. As in the pre- 
vious example, there is a slight (< 1%) shift in some 
resonance locations. The PDE thin-wire model (Section 
3.2) and the generalized HTSA model (Section 4) were 
used in conjunction with the tetrahedral mesh. The 
resonances at approximately 1.13 GHz, 1.26 GHz, and 
1.38 GHz are due to the slot. The transient response 
ran for 35,000 time iterations in the unstructured mesh 
(5,000 in the structured-grid portion of the hybrid 
mesh). No indication of instability was observed when 
using the standard VOIMAX time-averaging scheme on 
the unstructured mesh [1]. Note that the Q of all reso- 
nances is well characterized by the simulation for both 
examples. 

WlrtOC«m«ir-0.16em 
SotWkfth-0.1 cm 

_ Slot CMpm-0.05 cm 
Av*.T«ran«lrelEdgaUngth-1.097 cm 
35,000 Tkm tttraUons In Unsuudurad Maah 

o0r ' '  ■■ 
0.6      0.7      0.8      0.9        1        1.1       1.2      1.3      1.4      1.5      1.6 

Frequency (GHz) 

Fig. 20. Power delivered by source 
for Fig. 19 geometry. 

6.    Concluding Remarks 

VOIMAX is a general-purpose, transient electromag- 
netic field simulator that operates on hybrid-grid struc- 
tures. It is coupled to a commercial CAD system that 
provides advanced solid-modeling, meshing, and post 
processing. VOIMAX has been optimized for shared- 
memory, multi-processor computer systems (SMP). 
On a four-processor, Sun Ultra SPARC platform, per- 
formance ranges from 0.2 us/cell-time-step for multi- 
million element structured grids, to 4 us/cell-time-step 
for purely unstructured grids with a few thousand ele- 
ments. Hybrid-grid problems fall between these limits. 

The introduction of sub-cell wire and slot algorithms on 
unstructured grids significantly extends the application 
domain. Detailed source modeling, microelectronic 
packaging, complex aperture coupling, and particle-in- 
cell (PIC) applications using a QUICKSILVER- 
VOLMAX [17] hybrid are currently being investigated. 
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ABSTRACT 

The Finite Integration Method in the time domain (equivalent to FDTD) originally designed for high 
frequency problems will be applied to low frequency problems. A validation example demonstrates 
the ability to solve these problem types. We show how the computational effort depends on material 
properties and frequency. Finally we present the computation results of a practical example, a so called 
'Shading Ring Sensor', used for distance measurement. 

FINITE INTEGRATION ALGORITHM 

The method used for our calculations is the Fl-method [2], which in the time domain formulation becomes 
equal to Yee's [6] formulation. 
Maxwell's Equations are transformed one to one from the continuous domain to a discrete space by 
allocating electric fields on a grid G and magnetic fields on a dual grid G [1]. The allocation of the 
field components on the grid can be seen in Fig.l.   The discrete equivalents of Maxwell's equations 

dual grid 
grid 

Maxwell's Grid Equations 

Ce   =   -b (1) 
Ch   =   j + d (2) 
Sb   =   0 (3) 
Sd   =   q (4) 

rial Equations 

d   =   Dee (5) 
b   =   D„h (6) 
j   =   DKe + jA (7) Figure 1: One cell of grid G and dual grid G 

with electric and magnetic field components 
are shown in Eq.(l)-(4), where e and h are the electric voltages between grid points and the magnetic 
voltages between dual grid points, respectively,   d, b, j are fluxes over grid or dual grid faces.   The 
discrete analogon of the coupling between voltages and fluxes is represented by the diagonal material 
matrices De,D„ and DK. Now we have mapped Maxwells Equations on a discrete space. For different 
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problem types we can simplify these equations now. We are interested in two different approaches, a time 
domain formulation, which is equivalent to FDTD and a frequency domain formulation with harmonic 
excitation. 
The time integration is performed by using the well known leap-frog-scheme [6], which leads to an 
explicit scheme to solve the electromagnetic field problem. The scheme for the lossless case is described 
in Eqs.8-11 [2].  This algorithm is only stable for eigenvalues A; of A lying inside the unit circle.   In 

A   =    I AtD^CD:1   I-A^D^CD^C j     (9) 

b1 

e;- 
Af' + s' (8) f   =    (   "+1/2   ) (10) 

0 
-AtD; (11) 

other words, a maximum stable time step exists, which depends directly on the discretization and the 
material distribution inside the calculation grid. Instead of solving the eigenvalue problem this limit 
can be found for regular equidistant grids with homogeneous material distribution by the well known 
Courant condition: 

In the frequency domain we are interested in fields with harmonic time dependence, so the time derivatives 
in Eqs.l and 2 go over into iu. Within just a few steps we obtain the curl curl equation 

(CDC - U2
D) e = -%u'u (13) 

with 

D   =   D;1 (14) 

D   =   D£+^-DK, (15) 

which can be solved now with some modern numerical techniques. For the following computations we 
took into consideration the results of the harmonic solver as well as those of the time domain solver. 
Among others, both algorithms are implemented in the software package MAFIA1. 

OBTAINING FREQUENCY DOMAIN DATA OUT OF TIME DOMAIN SIMULATIONS 

For the extraction of harmonic fields out of time domain simulations we can distinguish between two 
different cases, depending on the excitation. On the one hand an excitation by a harmonic signal 
containing a specific frequency, on the other hand a broadband excitation, e.g. by a «5-pulse. For these 
two types the extraction of harmonic fields, namely the real and imaginary part of the field values at a 
certain frequency, will be discussed. 
For the monochromatic excitation we have the general problem of switching on a function. We can 
illustrate this by a multiplication of the harmonic time signal with a general function s{t). 

f(t) = s(t) ■ sin{t) (16) 

'MAxwells Finite Integration Algorithm 
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Depending on the choice of the function s(t), we get a more or less sharp frequency spectrum. The 
smoother this function s(t) is chosen, the sharper our frequency spectrum is. According to the choice of 
s(t) the computation time to reach steady state of a system will increase more or less. In general a couple 
of periods of the desired frequency are necessary to be computed to get the fields in steady state. The 
real and imaginary part of the field can then be extracted by two fields at a time distance of a quarter 
of a period. 

Re{E}   =   E(t0 + T/4)        Im{E}   =   E{t0) (17) 
Re{H}   =   H(t0 + T/4)       Im{H}   =   H{tQ) 

As a consequence of the Courant condition the smallest mesh step size in a calculation grid determines 
the maximum stable time step. This mesh step size is limited by convergence. To get rather accurate 
results one needs in practice at least 10 meshsteps per wavelength. For that reason the time domain 
method will usually be applied to high frequency problems. The effort to compute just a single period 
at a low frequency, e.g. at 50 Hz, is enormously. A homogeneous discretisation and a mesh step size of 
10 cm would lead to a time step A4 = 0.19 ns, so that the computation of one period would take about 
104 million time steps. For the computation of practical structures with some 100000 meshpoints such a 
computation would last weeks on a modern computer. 
In general, the computation time can be reduced by exciting a structure with a broadband pulse. In the 
following we will use a Gaussian pulse as time excitation. The computational bandwidth for that pulse 
depends directly on the pulselength of the timesignal (s.Fig.2,3). If we want to extract out of the discrete 

\    Gfio, ) = - 
c{s *)} 

0.1K)        050 1.00 1.5(1        2.00 2.50 

t/ns f/GHz 

Figure 2:   Gaussian Pulse in Time Domain Figure 3:  Gaussian Pulse in Frequency Do- 
corresponding to Fig.3 main corresponding to Fig.2 
time domain data the real and imaginary part for one certain frequency, we have to apply a discrete 
Fourier transform (DFT). 

N 

£(w) = St Y, s{nSt)exp{iun8t) (18) 
71=0 

This DFT was implemented in the time domain algorithm described above. In intervals St = niAt a 
summation for all field components of interest has to be performed according to Eq.18, where m can be 
determined by the sampling theorem 

n^2W~- (19) 

At is the computational time step out of the Courant Condition (Eq.12). Typically broadband excitation 
is used to determine signal quantities like the input impedance of an antenna or the scattering parameter 
of a waveguide structure. Moreover for a small number of frequencies the farfield, energies or losses or 
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just the field pattern of the electric or magnetic field are of interest. With the DFT feature broadband 
as well as harmonic results, the real and imaginary part of the electric or magnetic field at a certain 
frequency, can be extracted out of one single broadband computation. 
The whole computation time for a structure can be determined by the excitation pulse length, signal 
propagation times and for resonant structures by decay times. 
With an Gaussian pulse excitation we can extract now also low frequency data, since the excitation 
maximum is at DC. For these frequencies propagation times or resonant effects are often not of impor- 
tance. As we will see in the following, the diffusion time will be the limiting factor for time the domain 
simulations. 

VALIDATION WITH A SIMPLE DIFFUSION-EXAMPLE 

The following structure, a metallic plate with a thickness of 2 cm excited by a current coil at a distance 
of 2 cm, is investigated. Because of the symmetry of the structure (s. Fig.4 and 5) only a quarter of it is 
investigated. The frequencies of interest are 50 Hz and 10 kHz. The conductivity of the metallic plate 

Figure 4:  Metallic plate with varying 
conductivitv excited bv a coil 

Figure 5: A quarter of the investi- 
gated structure Fig.4 using symmetries 
for the computation 

is varied in a range from 1 S/m up to le7 S/m. In the figures 6, 7 the results of the frequency domain 
solver, refered to as F-results (curve with squares) were used as a reference. The curve with the circles 
show the results of the time domain simulations, in the following called T-results. 
Figs.6 (a)-(f) show the z-component of the magnetic flux density on the symmetry axis of our structure, 
plotted versus z.  Figs.6 (a,c,e) show the field at 50 Hz, (b,d,f) at 10 kHz.  From top to the bottom 
we used a conductivity of le2 S/m, le3 S/m and le5 S/m for both simulation frequencies.   The T- 
and F-results shown in Figs.6 (a-d) agree very well, whereas in (e,f) the results differ due to the short 
simulated time. 
Since <r/ut > 1 in our problem, the diplacement current in Maxwell's Equations can be neglected.  If 
we solve Maxwells Equations analytically now, we end up with the diffusion equation, which is written 
down here for the ID-case [3]. 

82Bz(x,t) 
■■ /j,a- 

dB,(x,t) 
(20) 

8x*      ~ ^      dt 
If we solve the"diffusion equation for a conducting half space x > 0 and an excitation by a unit-step 
function 

0    :    t <0 
B0 ■ 6{x)    :    t > 0 Bz(x,t): (21) 
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we finally obtain the following equation 

oo 

Bz(x,t) = B0-erfc(^^]     with    erfc{z) = -= I' exp(-u2)du (22) 

From this formula we can gain an approximation for the penetration time of an electromagnetic field 

'K-lOS/m A=n's/T. 

i  »i» i E3;i*r;:i 
"-" "'""T^T'Nr"! i  

—. .T. 

(a)  z/m 

(c)   z/m 

^'"/f :tjiIfilHllll 

(e)   z/m 

»=i?;7-.. «=0S/r» 

■ _ i Essa 
!0~« 

LM! 

i 13" \j  
• I.TJ [\J   — 

-«« D.N 

(b) z/m 

(d) z/m 

S53 

».oo *w 

(f)   z/m 
Figure 6:  (a)-(f) show the z-component of the magnetic flux density on the symmetry axis. Fig. a,c,e show the 
field at 50 Hz, Fig. b,d,f at 10kHz for the material parameters shown in the plots 

into a conducting material in dependence on the penetration depth. If we determine the half width of 
the previous result (Eq.22), we will find: 

erfc 
2y/t 

x^/ßä 

TJt   ' i 0.48 (23) 
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a 
S/m us 

f = 50 Hz f = 10 kHz 

S/m 
cpu—time 

s S/m Uiffu, 
cpu—time 

s 

T F T F 

1 0.014 71.2 5.03e-4 131.3 22.04 5.03 5.02e-4 131.0 22.41 
10 0.014 41.1 5.03e-3 131.2 22.01 1.59 5.03e-3 131.05 22.5 

100 0.051 7.12 0.05 452.26 22.04 0.503 0.05 451.8 20.62 
leb 0.28 0.225 50.3 2488.6 41.2 0.016 31.76 2491.6 36.8 
lei 0.28 0.0225 50.3 2490.8 35.9 0.0016 31.76 2492.6 41.9 

Table 1: Skin depths, diffusion times, simulation times, cpu-times for T- and F-results 

Approximately we get 

and   t Ri fiox (24) 

Focussing our attention on the simulation times we realize, that they are for case (e,f) in Fig.6 much too 
short (s.Tab.l). The electromagnetic field cannot penetrate into the metallic plate. For a computation 
time of 6/xs, 12 % of the diffusion time, we can see in Fig.7 that the T-results converge against the 
F-results. 
The diffusion time increases linear with the conductivity (Tab.l, Eq.24) up to the point where material 

Figure 7: z-component of magnetic flux density for a = le5S/m and a simulated total time of about 6fis (f=50Hz) 

depth and skindepth of the plate coincide. Then the diffusion time becomes independent of the material 
properties and is inverse proportional to the frequency. 

tdiffus = \       J_ 
pad2 

j_ 
6>d 
6<d with d = material thickness (25) 

For small conductivities the simulation times (Tab.l) of time and frequency domain solver are comparable, 
whereas with increasing values of a the frequency domain solver is obviously preferable. 
Although for most practical problems the application of the frequency domain solver is faster, the mere 
possibilty to obtain the same results with a method originally designed for high frequency problems, is 
impressing. 

PRACTICAL EXAMPLE 

The following example may demonstrate the applicability of the method described before to practical 
applications.   Fig.8 shows a quarter of the geometry of a "Shading Ring Sensor" developed by the 
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company Robert Bosch GmbH, Stuttgart, Germany. It consists of a E-shaped core. On the middle part 
a coil and a shading ring are located. Depending on the position of that shading ring the impedance 
of the exciting coil changes. The dependence between inductivity of the coil and the distance is ideally 
linear, so that the inductivity can be used for distance measurement. 

Figure 8: Shading Ring Sensor 

Figure 9: Real part of the magnetic field strength in a symmetry plane 

A comparison of the measured inductivites and the computed ones with frequency and time domain 
solver will be presented at the conference. 

CONCLUSION 

The Finite Integration Technique in the time domain, a technique typically used for high frequency 
applications, was used to solve low frequency problems. The computed results agree very well with 
reference results obtained from a frequency domain solver. For sure, the computational effort for very 
low frequency problems can be enourmously, but on the other hand, the frequency range for applying 
the FI-technique in time domain (or FDTD) is expanded obviously with this approach. 
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ABSTRACT 

Since simulation of broadband applications have gained in importance in the last years, the dis- 
persive characteristics of various materials must not be neglected anymore. As a result many 
frequency dependent FDTD methods have been set up which in most cases model special disper- 
sions of low order. On foundation of discrete system analysis we present an algorithm applicable 
to arbitrary material dispersions up to 2nd order derived from a general approach [1]. The appli- 
cability of the presented method is demonstrated with an example using a rectangular waveguide 
filled with dielectric layers with different dispersion characteristics. 

INTRODUCTION 

The formulation of the Finite Integration Technique (FIT) according to Weiland [2] provides a 
general spatial discretization scheme usable for different electromagnetic applications of arbitrary 
geometry, e.g. static problems or calculations in frequency and time domain. In our paper we 
refer to the Maxwell's Grid Equations (MGE) (l)-(4) and material relations (5)-(7) given by 

C Ds e   =   -T>A b (1) 
CDsh   =   D^d (2) 
SD^d   =   q (3) 
SD^b   =   0 (4) 

d   =   Dee (5) 
b   =   D^h (6) 
b   =   DKj. (7) 

The geometry is discretized on a dual orthogonal grid system with e, b located on the normal grid 
G and d, h on the dual grid G. Correspondent to that the analytical curl operator results in the 
curl matrices (C, C) and the divergence operator in the source matrices (S, S)._In the same way 
the grid resolution is contained in (Ds, Ds) representing the grid lines and (DA,t>A) the belonging 
areas. If the material is assumed to be frequency independent and isotropic, we have diagonal 
matrices De and DA describing the material relations. It can be shown, that the mentioned spatial 
discretization does not produce any instability since the discrete Maxwell equations fulfil energy 
and charge conservation [2]. 
Applying the well-known leap-frog scheme to the FIT formulas we can write (1,2) in form of two 
recursive update equations with e and b as the calculated field variables: 

b"+1   =   bn - At D^1 C Ds e"+1/2 (8) 

en+3/2   =   e
n+1/2 + At D71 D^1 C Ds D;1 bn+1. (9) 
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Using a homogeneous equidistant grid these equations reduce to the standard finite-difference 
time-domain (FDTD) algorithm according to Yee [3]. Now stability due to time discretization is 
restricted to a certain interval, namely given by the Courant condition in free-space 

At =    co 
1 1 1 

(10) 

Since the sofar described time domain algorithm is restricted to non-dispersive materials many 
efforts have been made in the last years to expand it in a useful way. An important aspect in 
connection with these extensions is the guarantee of stability, because it is not possible to transfer 
the criterion (10) to frequency dependent materials in a straight forward manner. Apart from a 
quite practicable solution for this problem we have proposed in a recent paper [1] a very general 
time domain algorithm for dispersive materials. There we provide a stability analysis that is ap- 
plicable to any frequency dependent time-domain method and therefore offers good possibilities 
for comparisons of the most important (FD)2TD algorithms [4, 5, 6, 7, 8, 9]. 

ALGORITHM FOR 2nd ORDER DISPERSION MODELS 

Our approach is within the framework of system analysis by first considering a linear time-invariant 
system of nth order, that can be described in general by a linear ordinary differential equation 
(ODE) of the same order. Rather then to discretize the nth order ODE directly by replacing 
time derivatives by the corresponding central difference operator [8], we first apply the state 
space formulation to our system to derive an explicit algorithm for the time-domain simulation[l]. 
This formulation is chosen, since it employs matrices in its fundamental equations similar to the 
FIT-method and therefore both methods can easily be combined. 
Since this procedure is presented in [1], we skip the derivation of the general approach and we 
present in the following the derived explicit update equation for a 2nd order dispersion model. 
We choose a maximum order of two for the dispersion, since it covers the most significant dis- 
persion models like Debye, Drude and Lorentz. Thus in the frequency domain the correspondent 
permittivity function reads as 

ßo+jw-ßi 
do + Jw ■ «i — w2 • 02 

e(ui) = e0      ft +—— 5      • (U> *■        ' I   V J f\. _    __L_    /W.I   .   *"!'-     _   /,]*   ■   fn~      I 

The discretization in time is done by using exact integration of the first order ODE's. In general 
we derive from dy(t)/dt - Ay{t) + b(t) for the homogeneous case yh{t) = C exp(At) and a 
special solution ys(t) = C(t) exp{A t) with C(t) = -b/A exp(A t) by variation of parameters. The 
combination gives us the general solution and finally the expression for a discrete time step At 

y"+! = y
neAAt + (eAAt - l)jAbn+1l2. (12) 

Here we like to mention that we assumed the function b as constant over the time step and 
separated by half a time step, where we choose the allocation of y at full time steps (alternatively 
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one has to add At/2 to all signals in equation (12) in case that y is allocated at t = (n + 1/2) At). 
Unfortunately this is not the case in the ODE for the first state variable Zi (the polarization), 
since it includes the electric field on the right hand side, which is allocated at the same positions 
in time. In order to ensure a higher accuracy the electric field e"+1 is averaged by its existing 
neighbour values en+1 = (e"+3/'24-en+1''2)/2 (see equation (16)). This finally leads to the following 
set of four coupled equations 

bn+1 

n+l 
bn -AiD^CDse

n+1/2 

Z2 =   De 

Zl 

n+3/2 

n+3/2 

, z2" + (7 - Delp2) D-1 (-Dao Zl"
+1/2 + Dt2 e"+1/2) 

=   Delpi e"+1/2 + (I - Bexpi) (-Dj-1 z2"+1 + D»-1 D^C Ds D;1 b"+1) 

=    Zi n+l/2 ■ At z2
n+1 + At D6l 1 (e"+3/2 + en+1'2) 

(13) 
(14) 

(15) 

(16) 

with the matrices D6l = D^ + DK ; Hh = T>ßo - DQl Bßl ; Dexpi = exp(-T>ß} D6l At) and 
Dexp, = exp(—DQ1 At). In this algorithm we have also taken a static conductivity into account, 
that can easily be added by the extension of the matrix D^ = D^, + DK, where the diagonal 
matrix DK represents the distribution of the conductivity inside the grid. 
For simulating multiple media with different dispersion models up to second order in a single time 
domain calculation simultaneously, one has to set the dispersion model coefficients accordingly. 
In Table 1 they are summarized for the most relevant dispersion models, where the not listed 
coefficients are set to a2 = 1 and ß2 = eo «oo by definition. 

Table 1: Permittivity model coefficients of Debye, Drude, Debye 2nd order and Lorentz dispersion 
for the 2nd order algorithm (13)-(16). 

Debye Drude Debye 2nd Lorentz 

a0 0 0 l/fara) ^0 

Qi 1/r vc (TI + T2)/(T1T2) 5 

Ä 0 «oAeoj2 €0 (Aej + Ae2)/(T! r2) toAtul 

A «o Ae/T 0 e0 (A«! r2 + Ae2 7I)/(TI r2) 0 

EXAMPLE 

To verify the presented method, the 2nd order algorithm is applied to an S-parameter calculation. 
In Figure 1 the test structure, a dielectric filled waveguide with different layers in propagation 
direction, is shown. Two frequency dependent materials with a 2nd order dispersion are present 
(Debye 2nd order, Lorentz medium; see Figure 2). The rest of the waveguide is filled with vacuum 
and throughout the waveguide the permeability equals /JL = IM>. 
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H10 

S-,1 

20 mm 

i Lorentz y 

i Media ' 

Port 1 3 mm      3 mm     3 mm 

J21 

Port 2 

Figure 1: Rectangular waveguide (/J, — ßo, port separation is 20 mm, cross-section 20 mm x 
5 mm) with layers of different permittivities including Co and dispersive permittivities Debye 2nd 

order: e«, = 1; «« = es2 = 2, n — l/2/7r/10e9 s, T2 = l/2/7r/20e9 s; Lorentz medium: 
too = 1; «S1 = 2, «5 = 20e9 #z; u0 = 2 TT 20e9 Hz. 

fle {£(0))}  
rt -Im {£(©)}  

1e+10 1.5e+10    2e+10    2.5e+10    3e+10 1e+10    1.5e+10    2e+10    2.5e+10    3e+10 

Frequency/Hz Frequency/Hz 

Figure 2:   a) Real and imaginary part of 2nd order Debye material (frequency range 10GHz- 
30 GHz) b) Real and imaginary part of Lorentz material (frequency range 10 GHz-30 GHz). 

We want to determine the amplitude and phase of the 5u,S,
2i parameters at the given ports 

separated by 20 mm for the frequency range 10 GHz - 30 GHz. Thus a broadband stimulation 
with the fundamental mode at port 1 in form of a Gaussian pulse modulated with a carrier 
frequency of 20 GHz results in the frequency domain in a Gaussian shaped excitation spectrum 
centred at 20 GHz with a 60dB bandwidth of 10 GHz. At the two ports a special waveguide 
boundary condition is used [11] that enables the simulation of an infinitely long waveguide ensuring 
a parasitic reflection of less than -120dB. To minimize grid dispersion the grid resolution is chosen 
such that it allows for thirty steps per wavelength for the highest frequency. 
Thus the S-parameter calculation covers the following steps: 

1. 2D-eigenvalue solver:  calculation of the propagation modes inside the waveguide by dis- 
cretizing the cross section of the waveguide (e = to, ß = Po)- 

2. 3D time domain simulation: broadband excitation with the fundamental mode at port 1 
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and monitoring the mode amplitude of the reflected wave at port 1 and the transmitted 
mode amplitude at port 2. 

3. Post-processing: S-parameter calculation from the excitation and the monitored signals in 
the frequency domain by using the Fast Fourier Transform (FFT). 

1e-02 

1e-03 

1e-04 

1e-05 

0.0 
1e+10     1.5e+10    2e+10    2.5e+10    3e+10 

Frequency/Hz 

1e-06 
1e+10    1.5e+10    2e+10     2.5e+10    3e+10 

Frequency/Hz 

Figure 3: Comparison of numerical results with analytical solution in the frequency range 10 GHz- 
30GHz. a) Absolute value of S-parameter Su, S2i; b) amplitude error of S-parameter \Sn\, \S2i\- 

Figure 3 presents the absolute value of S-parameter Su, S21 compared with the analytical solution 
and the resulting amplitude error for the frequency range 10 GHz-30 GHz. As it can be seen there 
is an excellent agreement of the numerical results with the exact solution. The absolute amplitude 
error is well below 10~3. 

180° 

-180 
1e+10     1.5e+10    2e+10    2.5e+10    3e+10 

Frequency/Hz 
1e+10    1.5e+10    2e+10    2.5e+10    3e+10 

Frequency/Hz 

Figure 4: Comparison of numerical results with analytical solution in the frequency range 10 GHz- 
30GHz. a) Phase of S-parameter Sn, S21,' b) Phase error of S-parameter \Sn\, \S2i\. 

A similar good agreement in case of both S-parameter phase results shows Figure 4.   Here the 
maximum absolute phase error is below 0.6°. 
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CONCLUSION 

In this paper we presented a very general possibility to extend the FIT algorithm for modelling 
dispersive media with a dispersion of 2nd order. This algorithm was derived from a general 
approach based on system analysis with a state-space formulation. The additional state-variables 
correspond to physical properties, the polarisation und the polarisation current density. We 
demonstrated the good accuracy of our algorithm with an example of a rectangular waveguide 
filled with two layers of frequency dependent material of second order (Lorentz-Media and a 2nd 

order Debye-Model). 
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Abstract 

An electric field integral equation based marching-on-in-time algorithm is developed for analyzing transient 
radiation from thin wire antennas mounted on three-dimensional, perfectly conducting bodies. The feed network 
for the antennas is also included in the analysis using a one-dimensional finite difference time domain scheme. 
Numerical examples that validate and demonstrate the efficacy of the proposed method are presented. 

1 Introduction 

In the past, time domain integral equation based methods have been employed for analyzing transient scattering 
and radiation phenomena. Scattering from three-dimensional perfectly conducting and dielectric bodies has been 
simulated using both Electric and Magnetic Field Integral Equation (EFIE,MFIE) based solvers [1-4]. Similar 
studies have been conducted separately on wire antennas [5,6]. This paper describes an EFIE based Marching- 
On-in-Time (MOT) algorithm that enables the transient analysis of radiation from complex structures that consist 
of arrays of thin wire antennas mounted on arbitrarily shaped perfectly conducting bodies (Fig. 1). Transient 
fields on the network feeding the antennas are also computed in conjunction with the currents on the radiating 
structure. 

This paper is organized as follows. Section 2 outlines the formulation of the time domain EFIE and MOT 
algorithm. Section 3 presents several numerical results obtained using the proposed technique. The last section 
states the conclusions of this study. 

2 Formulation 

In this section, an algorithm is outlined for analyzing radiation from wire antennas that are mounted on arbitrarily 
shaped conducting bodies. Section 2.1 describes the time domain EFIE which relates the excitation field to the 
electric currents on the radiating structure. Section 2.2 outlines an MOT algorithm for solving this equation. 
Section 2.3 introduces the feed network which provides the antenna excitation, and describes a finite difference 
based updating scheme that complements the MOT scheme for modeling the feeds. 

2.1    The Time Domain EFIE 

Let S denote the surface of a perfectly conducting structure^composed of wire antennas mounted on bodies. Assume 
that an incident electric field Einc(f,t) induces a current J(f,t) on S. The field Er(f,t) radiated by J{f,t) can be 
computed using a dual potential formulation as 

Er(f,t) = -^Ä(f,t)-V9(f,t). (1) 
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/, 
dS' 

R     ' 

In Eqn. (1), the magnetic vector potential A is 

Ä(f,t): 

and the scalar potential <$ is 

(2) 

(3) 

In Eqns. (2) and (3), R = \f — f'\ is the distance between the source and observation points, T = t- R/c denotes 
the retarded time, and fio and «o are the free space permeability and permittivity, respectively. The current and 
charge density on S are related by the continuity equation 

V-J(f,t) + — a(f,t) = 0. (4) 

Using Eqns. (1) through (4) and enforcing the boundary condition on the tangential electric field on S leads to an 
integro-differential equation in terms of J(f,t): 

s.-^,*) = *. Hi I 
2**Js 

dS' 
,,J(f',r) 

R A-KCa    Js 
dS1 .,v-J») 

R (5) 

where 5 is a vector tangent to the radiator surface S. 

2.2    The MOT Algorithm 

The first step in constructing a time-marching procedure to solve Eqn. (5) involves the discretization of S. 
In what follows, it is assumed that the surfaces belonging to S are approximated in terms of triangular facets, 
and that wires are modeled by straight wire segments. Three distinct basis functions are used to represent the 
currents on S. Given a triangular mesh of the surfaces, surface currents are expanded in terms of the well-known 
Rao-Wilton-Glisson basis functions [8]. One basis function is associated with each edge interior to S: 

AC) = { 

2A+Pn 

l„ 

;finT+ 

;finT- 

; elsewhere, 

(6) 

where /„ is the length of the edge common to the facets T+ and T„ , and A* is the area of the triangle T* (Fig. 
2(a)). 

Each wire basis function is associated with a node connecting two wire segments. The current at wire node n 
located at f„ and connecting segments n and n + 1 is modeled by a triangular basis function given by 

#(«) = < 

Sn(l + - 

Sn+l(l" 

5 

;-«*-! < < s < 0 

-)   ;0<s<s„+i 
i 

; elsewhere, 

(7) 

where s„ = (f„ - f„_i)/\rn — f„-i\ is the local tangent unit vector associated with segment n, 5„_i = |f„_i - 
»n|.Sn+i = l'"n+i — '~n|> and s is a local length coordinate which measures the distance away from node n in the 
direction specified by s„ for -s„_i < s < 0 and by J„+J for 0 < s < s„+! (Fig. 2(b)). In what follows, it is 
assumed that the wire radii are electrically small so that thin wire approximations hold. 
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A surface-wire junction basis function, f£w(f), describes the current flowing into a wire segment from all of 
the junction triangles that have the junction node as a vertex [9]. The wire portion of f'k

w (f) has exactly the same 
form as a wire basis. The portion of the basis function associated with the k"1 junction triangle is given by 

[Ö ; elsewhere, 

where pk is the local position vector defined in the junction triangle pointing from the junction node to the 
observation point and a is the angle in radians subtended by all of the junction triangles. Parameter rjk is defined 
as 7}k = Ail A where A\ is the area of the triangle determined by f and the two nodes of the junction triangle as 
shown in Fig. 2(c), and A is the total area of the junction triangle. 

With the spatial basis functions defined, the current in Eqn. (5) can be approximated as 

N     x 

J(?,')*E   E W(rTC-iA'), W 
n = l j=~ co 

where A" is the total number of unknowns, /«(r) for g = s,w,sw is the corresponding surface, wire, or surface-wire 
junction basis function, T(t) is a temporal basis function, and At is the time step size. T(t) is chosen to be a cubic 
interpolation function with a piecewise continuous second derivative. 

Substituting Eqn. (9) into (5), and applying Galerkin testing at the jth time step yields a system of equations 
that can be concisely represented in matrix form as 

j'-i 

Z0lj=£'j"
c + ^2Z,XJ-,, (10) 

1=1 

where lj is an array of the current coefficients P„, Zi is a matrix that accounts for the interactions between the 
(> - l)th and j'h time steps, and the array £jnc represents the time derivative of the incident field tested at the 
fh time step. It is assumed that the incident field is due to delta-gap sources that are located at the surface-wire 
junctions. In the MOT scheme, current coefficients I'n are calculated by starting from the first time step and 
solving Eqn. (10) at each time step. 

2.3    Analysis of the Feed Network 

The voltages associated with the delta-gap sources that excite the antennas follow from a transient analysis of 
the feed network. The feed network is modeled in terms of one-dimensional transmission lines. The currents and 
voltages on the transmission line are calculated using a one-dimensional finite difference time domain scheme as 
described in [7]. In this scheme, the update equations for the nth node of the transmission line at the jth time step 
are given by 

^+0.5 = yj-O.S _ (^(^[/j^, - /£_„„], (11) 

til, = 'JUO, - ^>P#" - v-+05]' (12) 

where v and Z0 are respectively the phase velocity and the characteristic impedance of the line, and Az is the 
distance between two adjacent nodes. The voltage update equation at node na where an antenna is connected can 
be found from 

a T/i+0-5 _ yi-o.5 .. v      ■ 
ZI'. = &< -     "•        At      ' = -^)K.+0.5 - I'n.-0.ä - U^V'a- (13) 

In Eqn. (13), V£ and I{ represent the delta-gap voltage and current at the corresponding surface-wire junction at 
the jth time step'. Hence, the values of VrJ+0'5 and Pa can be found by solving Eqns. (10) and (13) simultaneously. 
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3 Numerical Examples 

The first example considered is a 0.5m length monopole antenna mounted perpendicularly on a Im x lm conducting 
plate that lies on the zy-plane (Fig. 3). The plate is discretized by 128 triangular facets. The antenna is excited 
by a delta-gap voltage source that is directly connected to the surface-wire junction. The time dependence of the 
source is given by 

t"'"=(r) = VJe-C-''»2, (14) 

where a = 1.9099 x 10~9s, tp - 1.1459 x 10~8s, and V0 = W. All results in this paper are compared to Inverse 
Fourier Transformed (IFT) frequency domain data that are obtained from a frequency domain Method of Moments 
(MOM) code that uses spatial basis functions identical to those used in the MOT scheme. For the given problem, 
the current at the surface-wire junction computed by the MOT algorithm is shown in Fig. 4(a). The agreement 
between the MOT result and the IFT data is very good. Magnitude of the same surface-wire junction current for 
the first 10000 time steps is plotted in logarithmic scale in Fig. 4(b). Clearly, the algorithm does not exhibit any 
late time instabilities. Once all the currents for all time steps are computed, the algorithm calculates the transient 
radiated far fields according to the procedure outlined in [1]. As an example, the 6 directed electric field in the 
6 = 45°, 0 = 0° direction is depicted in Fig .5. 

The second example consists of two monopole antennas mounted on the square plate of the first example (Fig. 
6(a)). The circuit diagram of the feed network is shown in Fig. 6(b). The time dependence of the voltage source 
is again given by Eqn. (14). The computed transient current at the junction of the shorter monopole and the 
plate is plotted in Fig. 7. The corresponding IFT results are obtained by post-processing the MOM results at each 
frequency by a simple frequency domain transmission line network analysis code. Again, the agreement between 
the two data is very good. Finally, the 0 directed far zone electric field in the 9 = 45°,^ = 0° direction is plotted 
in Fig. 8. 

4 Conclusions 

An MOT algorithm has been described for analyzing the transient radiation characteristics of wire antenna arrays 
mounted on three-dimensional perfectly conducting bodies and excited by a feed network. The accuracy and 
stability of the algorithm have been demonstrated through numerical examples. Although examples presented in 
this paper only consist of straight wire antennas mounted on open surfaces, the proposed method can effectively 
be applied to transient analysis of any arbitrarily shaped wire antenna arrays mounted on either open or closed 
conducting surfaces. 
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Figure 1: A schematic representation of the radiating structure, where di,Zi for i = l,..,n are respectively the 
length and characteristic impedance of different segments of a feed line. 

Figure 2:   (a) Basis function for surface currents,   (b) Basis function for wire currents,    (c) Basis function for 
currents on surface-wire junctions. 
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Figure 3: A 0.5m length monopole antenna mounted on a square conducting plate. 
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Figure 4: (a) Transient current at the junction where the monopole is connected to the surface, (b) Magnitude of 
the current for the first 10000 time steps. 
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Figure 5: (a) The~0 directed transient radiated electric field in the 9 = 45°, 0 = 0° direction, (b) Magnitude of the 
electric field for the first 10000 time steps. 
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Figure 6:   (a) Two monopole antennas mounted on a square conducting plate,   (b) Circuit diagram of the feed 
network, where h and r are the length and radius of the corresponding wire antenna. 
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Figure 7:   (a) Transient current at the junction where the shorter monopole is connected to the surface,   (b) 
Magnitude of the current for the first 10000 time steps. 
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Figure 8: (a) The Ö directed transient radiated electric field in the S = 45°, $ = 0° direction, (b) Magnitude of the 
electric field for the first 10000 time steps. 
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Abstract 

The finite-difference time-domain (FDTD) method is a powerful numerical technique for transient solu- 
tions of electromagnetic waves. When applied to cylindrical coordinates in a straightforward way, however, 
it is limited by the contradictory requirements for accuracy and for numerical stability. These limitations 
arise because of the nonuniform distribution of cells in the computational domain. Moreover, the staggered 
grid encounters a singularity problem at the origin. We proposed a new pseudospectral time-domain (PSTD) 
method for the solution of Maxwell's equations in cylindrical coordinates. It eliminates the singularity prob- 
lem by using a centered grid. Because of its high accuracy in the spatial derivatives, the PSTD method can 
employ a much larger cell and time step, making the algorithm far more efficient than the FDTD method. 

I. Introduction 
The finite-difference time-domain (FDTD) method has been enjoying its widespread applications in the 

simulations of transient electromagnetic wave propagation and scattering since it was first proposed by Yee 
in 1966 [1]. 

However, as the available computer memory and computational speed grow rapidly so that unprece- 
dented large-scale problems can be solved, the FDTD method starts to show its limitation because of its 
relative large phase dispersion error. As the problem size increases, so does the number of unknowns per 
wavelength. For example, the standard finite-difference time-domain (FDTD) method requires a grid density 
(number of nodes per minimum wavelength A) of 10-20 even for a problem of moderate size. For a large-scale 
problem of 512A in each direction, for example, a grid density of at least 64 is required in order for the FDTD 
method to reach an accuracy of about 2%. As a result, with the conventional FDTD method, a large-scale 
3-D problem of size 128A x 128A x 128A requires more than 1.67 x 1010 nodes if a modest grid density of 20 
is used. This problem is apparently still beyond the reach of the most powerful supercomputers. 

In cylindrical coordinates, the conventional FDTD method encounters yet two more difficulties: (i) 
the requirement for a very small At because of the high concentration of cells near the z axis, and (ii) the 
singularity at the z axis. Although various remedies have been proposed, the treatment is not straightforward, 
and requires extra manipulations and computation time. 

In this work we propose a pseudospectral time-domain (PSTD) method for 3-D cylindrical and 2- 
D polar coordinates. Similar to the PSTD algorithm for Cartesian coordinates, it uses the fast Fourier 
transform (FFT) to represent spatial derivatives, and the PML to remove the wraparound effect in the FFT 
computation of the non-periodic problem. The PML is based on two different formulations, i.e., the improved 
PML scheme of complex coordinates formulation, and the simplified quasi-PML formulation. Compared to 
its Cartesian counterpart, the cylindrical PSTD algorithm is special in that it requires a delicate treatment 
in the radial direction, as discussed later. The azimuthal direction, on the other hand, is simpler since the 
problem is naturally periodic in this direction. 

Section II first summarizes the equations for the quasi-PML and improved PML using the complex 
coordinates [2-6]. Then the PSTD algorithm is presented to treat the derivatives in radial and azimuthal 
directions. Several numerical examples are shown in Section III to demonstrate the efficacy of the cylindrical 
PSTD algorithm. 

II. Formulation 
Consider an isotropic, inhomogeneous medium with space-dependent electric permittivity e(r), magnetic 
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permeability fi(r), and conductivity <r(r). Maxwell's curl equations governing electromagnetic fields in the 
medium are given by 

VxE = -p— -M, (1) 

9E 
VxH = e—+aE + J, (2) 

where J and M are the imposed electric and magnetic current densities, respectively. Our aim is to solve 
these two equations in cylindrical coordinates with a new pseudospectral time-domain (PSTD) method [7-9]. 
The PSTD algorithm will use the fast Fourier transform (FFT) for spatial derivatives, and the cylindrical 
PML presented below to remove the wraparound effect. 

A. Quasi-PML for Cylindrical Coordinates 
Using a unified formulation [6], we can derive equations for quasi-PML and true PML. For the quasi- 

PML formulation, it can be shown that the time-domain split equations in cylindrical coordinates are 

dE^ 

dE\ 
aze 

dt 

dE^_ 

at 

dE(,z) 

e-bT 

(3) 

(4) 

+ (upe + apa)E<f> + Ufa f £<« (r)dr = ^ - J<«, 

+ {uzi + aza)Ep^ + uzo j E^(r)dr = -^ - J«, 

+ {upe + apa)E^ +upa f^\r)dr = -^-J?\ (5) 

+ (<*« + az<T)Ef + „,*£   E^\r)dr = ^ - J« (6) 

a/-^ + {Up + apa)Ez+^ fJz(r)dr=l^l-d-^-Jz, (7) 

In the above, the split field components are Ep = £$*> + Ep
z\ and Ej, = E*f + Ef. The other set of 

equations for updating H can be obtained by duality. Note that in the quasi-PML formulation, there is no 
need to split Ez and Hz. Therefore, the total number of unknown field components is 10 instead of 12 as 
for the true PML presented below. 

B. An Improved PML for Conductive Media 
For 3-D cylindrical coordinates (p,<f>,z), the extension of the improved PML [3, 6] is straightforward 

since the z direction is the same as for the Cartesian coordinates. Furthermore, the extension to conductive 
media can follow the same procedures as in [10]. Therefore, based on the improved PML formulation, the 
time-domain split equations for conductive media can be derived as 

V^ff + {Slpe + Apa)EM+npof_jM(T)dT = ^ - J«>, (8) 

**'-£- + ("* + aza)Ef + wz<? y_    £<*> (r)rfr = -?j£-jM, (9) dt 

■ + (Uft + a,*)*!« + »S>f   E^(r)dr = -^ - J« (10) 

846 



aze-£- + (uze + aza)E^ + u>zo j     E^(r)dr = ^ - J<*>, (11) 

+ (up + apa)E^ + wpa j    £<"> (r)dr = ^SA - jj'>, 
J — QO @P 

A/-^- + (0,e + ArfEfP + Üpe j     E<« (r)dr = Ht - ^ - J™. 

dE^ 
e~dT (12) 

(13) 

The other set of equations for updating H can be obtained by duality. The total number of unknown field 
components is 12 for this improved PML formulation. 

C. The PSTD Algorithm 
Since the treatment in z direction in the PSTD algorithm is exactly the same as in Cartesian coordinates, 

we refer the reader to [7-9] for all aspects of PSTD except for the treatment in p and <f> directions. Hence, 
below we will discuss on the spatial derivatives of a function /(p, </>). 

Instead of using a staggered grid as in the FDTD method, we use a centered grid where all field 
components are located at the center of each cell. Therefore, if the (p, <j>) cross section (p, (j>) e {[0, pmax] x 
[0, 2TT]} is discretized by JV,, x N# uniform cells, any field component /(p, 0) is defined at f[(jp + l/2)Ap, (j^ + 
1/2)A0] = fUfJi), where Ap = pmcLX/Np, A<p = 2TI/N^ jp = 0, • • ■, N„ - 1, and jt = 0, • • •, Nj, - 1. The 
first benefit of this centered grid is the removal of the singularity at z axis present in the staggered grid. 

In the PSTD algorithm, the spatial derivative d/d(j> is easily obtained by FFT since there is a natural 
periodicity in the <j> direction. Using the .discrete Fourier transform (DFT), we can represent 9/(jp,.7#)/6V 
as 

[mWd] = i      £      •VCi,.™*)««**', (14) 

where fc^ = m^,, and f{jp,tn#) is the Fourier series 

fUr,™*) = A<t> ]T fUp,U)B-ik**s- (15) 
j*=o 

This representation is exact up to the spatial Nyquist sampling frequency. Note that the forward and inverse 
DFT's in (15) and (14) can be achieved by the fast Fourier transform algorithms with a number of arithmetic 
operations 0(N^, log2 N$). 

The treatment of the p derivative is more complicated compared to the Cartesian coordinates, simply 
because that the boundary at p = 0 is not an open boundary. One way of treating this is to use Chebyshev 
pseudospectral method [11-12] which inevitably increases the number of nodes at p = 0 and has a stringent 
stability criterion for At. Below we present two ways to use the Fourier series for p derivatives. 

(a) The asymmetric form of PSTD algorithm in p direction 
The most straightforward way to approximate the p derivative df(jp, J4,)/d4> is 

^«ü,/ = J7,{i*^>y]}1 (i6) 

where Tp and T~l denote the forward and inverse FFT in p direction. Since p = 0 is a physical boundary, 
PML cells have to be placed near the outer boundary p = pmaI to remove the wraparound effect due to the 
periodicity of the DFT. 
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There are two major disadvantages associated with this approach: (i) More PML cells (usually around 
20) are required near the outer boundary since the periodicity applies here (in contrast to a perfect electric 
conductor for the FDTD). Half of the PML cells have an increasing profile, and the other half have a 
decreasing profile, i.e., 

»PU)=^{l-lN>-M/*-lß-Jly,        (J = N,-M,...,Nf-l), (17) 

where M is the number of PML cells, p is the order of the PML profile, and wPjmaI is the maximum value of 
uip. (ii) Because of the periodicity, the negligibly small field at pmax (due to the PML attenuation) imposes 
a null-field condition at p = 0, effectively creating a small ghost source at the z axis. As observed from 
numerical experiments, this ghost source, although small, produces noticeable spurious fields. 

(b) The symmetric form of PSTD algorithm in p direction 

A much better way to treat the p derivatives is to use the symmetric form by assigning a new function 
for 0 < 34 < Nf/2 - 1 (assuming N$ is even) such that 

(/(-/-!„ 

\fU',H), 
9(3,]*) = {    , ,     s , (18) 1  "■'  ' % for j' = 0,-",iV,-l 

Then the derivative is found by the FFT of these N#/2 new arrays of length 2NP, in a way similar to (16). 
The total computation burden is reduced from (a) because only half the PML cells are needed. With this 
approach, both disadvantages in (a) have been removed. 

III. Numerical Results 

We have implemented the PSTD method for 3-D cylindrical coordinates as well as 2-D polar coordinates 
for conductive media. Figure 1 shows an example of a line source in a 2-D free space. The source has a 
Blackman-Harris window time function with center frequency fc = 300 MHz, and is located at ps = 1.5 m, 
4>s = 87.19°. The computational domain is meshed by Np x N$ = 32 x 64 cells with Ap = 0.2 m (or about 2 
cells per wavelength at the frequency 2.5/„) and Ar = 12.5 ps. The snapshots show the effectiveness of the 
10-layer PML ABC, while the last sub-plot shows the excellent agreement between the PSTD result and the 
analytical solution. 

For the PSTD code to solve this problem on a SUN Ultra 1 workstation, it takes 140 seconds for the 
required 4000 iime steps. For an acceptable accuracy, the FDTD method needs Np x N# = 128 x 256 cells, 
requiring 16 times more computer memory. In addition, a much smaller time step At = 1.25 ps has to be 
chosen for stability, requiring a total 40,000 time steps for the same problem. As a result, the FDTD code 
takes about 7 hours CPU time to complete this problem, or roughly 180 times slower. 

848 



N
or

m
al

iz
ed

 H
z 

o
  
  

  
  

  
  

  
o

 
.* 

  
  
 o

i  
  
 o

  
  
 e

n 
  
  
- 

  PSTD 

A Analytical 

f 
20 40 

Time (ns) 

Figure 1. Prom first to fifth sub-plots, snapshots at time steps n = 500, 1000, 1500, 2000, and 2500 
(At = 12.5 ps). The last plot compares the PSTD result with the analytical solution at p = 3.1 m, 
<t> = 154.69°. The source is located at ps = 1.5 m, </>s = 87.19°. 
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Figure 2. An array waveforms in free space. 
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We simulate the same source in an even larger problem. The center of source is located at (p, <j>) = 
(128,35) cells in a computational domain of AT,, x JV# = 64 x 256 cells (pmax - 10 m). Fifteen receivers are 
set uniformly around a circle 30 cells away from the origin, and are 16 cells apart in <j> direction. The first 
receiver is located at (30, 16). The numerical results agree well with analytical solutions, as shown in Figure 
2. 

Conclusions 
We have developed a pseudospectral time-domain method for 3-D cylindrical and 2-D polar coordinates. 

It uses the FFT to represent spatial derivatives and the PML to remove the wraparound effect. Excellent 
agreement between the PSTD results and analytical solutions has been observed even when the sampling 
is at the Nyquist frequency. Compared with the conventional FDTD method, the PSTD method has the 
following advantages: 
(1) There is no dispersion error related to the spatial derivatives. 
(2) The only dispersion error due to temporal derivatives in PSTD is isotropic. 
(3) Only 2 nodes/A are required regardless of the electrical size of the problem. 
(4) There is no need for material averaging because of the use of the centered grid. 

These advantages are common with those in Cartesian coordinates. For cylindrical coordinates, the 
additional advantages are: 
(5) The singularity at p = 0 is no longer present. 

(6) The largest benefit is that the required number of time steps is reduced by a factor of A"2, where K is 
the ratio of Ap in PSTD and in FDTD. For the example shown, K = 4; It increases with the electrical 
size of the problem. 

The PSTD algorithm is therefore ideal for large-scale problems. In the near future, we hope to report 
on our investigation to optimize the PSTD method for problems with mixed scales (large structures with 
fine details) as well as problems with discontinuous tangential field components such as those near a metallic 
surface. 
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ON THE PSTD METHOD FOR LARGE-SCALE PROBLEMS 

Q. H. Liu 

Klipsch School of Electrical and Computer Engineering 
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Las Cruces, NM 88003 

Abstract 

Conventional finite-difference time-domain (FDTD) methods require a large number 

of unknowns, typically 10-20 nodes per minimum wavelength A for a problem of medium 

size. This work makes a theoretical comparison of the pseudospectral time-domain (PSTD) 

method with the FDTD and MRTD (multi-resolution time-domain) methods. The new 

PSTD algorithm is based on the fast Fourier transforms and perfectly matched layers. It 

significantly reduces the number of unknowns to 2 nodes/A. The method is demonstrated 

by a three-dimensional problem with an apparently unprecedented size of 128A x 128A x 
128A. 

I. Introduction 
Simulation of electromagnetic wave propagation in large-scale problems is a great chal- 

lenge to full-wave numerical methods because of the large number of unknowns required. 

For example, the standard finite-difference time-domain (FDTD) method [1-3] requires a 

grid density (number of nodes per minimum wavelength A) of 10-20 even for a problem of 

moderate size. For problems of large scales, the grid density has to increase in order to 

produce accurate results since the dispersion error accumulates rapidly as the problem size 

increases. As a result, with the conventional FDTD method, a large-scale 3-D problem of 

size 128A x 128A x 128A requires more than 1.67 x 1010 nodes if a modest grid density of 

20 is used. Hence, this problem is apparently still beyond the reach of the most powerful 
supercomputers. 

To increase the efficiency and reduce the computer memory requirement, higher order 

FDTD methods can be used. Alternatively, the multi-resolution time-domain (MRTD) 

method [4, 5], and spectral-domain methods such as the Fourier method [6] and generalized 

k-space method [7] have also been developed to reduce the grid density to or close to the 

Nyquist sampling rate. Unfortunately, the spectral-domain methods in [6, 7] are only valid 

for spatially- periodic problems. 

Recently a pseudospectral time-domain (PSTD) method has been proposed to reduce 

the grid density to 2 by using the combination of the fast Fourier transform (FFT) algo- 
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rithm and the perfectly matched layer (PML) [8-9]. The method has been validated for 

multidimensional inhomogeneous media. In this work, we compare the PSTD algorithm 

with the FDTD and MRTD methods for the accuracy and efficiency. A large-scale problem 

of size 128A x 128A x 128A is shown to demonstrate the power of this new method. 

II. Comparison of Methods 

Using PML as the absorbing boundary condition, the split Ampere's law, for example, 

can be written as [9] 

9HM 
avix- 

dt 
■ + MUvB.M = ~{fixE), (1) 

where r) = x, y, z and H =    £    H<''. The differences among FDTD, MRTD, and PSTD 
TJ=X,J/,2 

methods are in the approximation of the spatial derivatives 

(2) 

with 

'V{*M>»[/fa)]}, for PSTD, 

*Vfo) ={    ,   PI* (3) 
^ £ aiMl + 3&V/2) -fin- JATJ/2)],    for FDTD/MRTD, 

7=1 

where P = 2 and ai = 1 for FDTD, P = 18 and a, for MRTD are given in [4], and T 

and T~x denote the forward and inverse Fourier transforms which are achieved by an FFT 

algorithm [9]. Under the assumption that Ax = Ay = Az, the dispersion relations in these 

methods for a plane wave in a homogeneous medium are 

f cAt 

.   uAt 
sin— =< 

^^kl + kl + kl, for PSTD; 

P/2 

^\    E   {t^ajsin^AriU-l^)}]2,    for FDTD/MRTD. 
(4) 

Compared with FDTD and MRTD, the PSTD method has the following advantages: 

(1) There is no dispersion error related to the spatial derivatives. The only dispersion error 

is caused by the second-order finite difference approximation in temporal derivatives. 

This error can always be reduced by using a smaller At. 
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(2) The dispersion error in PSTD is isotropic instead of anisotropic as in other methods. 

(3) Since there is no spatial dispersion error in the PSTD method, only 2 nodes/A are re- 

quired regardless of the electrical size of the problem. As a result, orders of magnitude 

saving in computer memory and computation time can be achieved. 

(4) The reflection from the PML ABC can be made much smaller in the PSTD method 

since the larger cell allows a smaller PML attenuation coefficient. 

(5) Instead of a staggered grid, a centered grid is used in PSTD. This eliminates the 

need for material averaging near material discontinuities which distorts the original 
medium. 

The stability criterion of these three methods can be written as cAt/Ax < l/(a\/3) 

for 3-D problems, where a = 1 for FDTD, a = 1.5684 for MRTD, and a = 1.5708 for 
PSTD. 

III. Numerical Results 
Fig. 1(a) compares the dispersion relations in the three methods with the exact disper- 

sion relation for a one-dimensional problem. The relative error in the normalized wavenum- 

ber K = k\ is shown as a function of the normalized frequency W = uiX/c (where A is 

the minimum wavelength corresponding to the highest frequency). The grid density is 

32 for the FDTD algorithm, and 2 for the MRTD and PSTD algorithms. A small At is 

chosen so that the stability condition is satisfied for all algorithms. It is observed that 

the PSTD algorithm has the highest accuracy in dispersion. The small dispersion error 
comes from the approximation in temporal derivatives. Indeed, the PSTD algorithm may 

be considered an optimal time-domain solution in the sense that it requires the minimum 
spatial sampling rate while maintaining the highest accuracy in its dispersion relation. 

This advantage of the PSTD algorithm is important for simulating large-scale prob- 

lems. As an example, the propagation of electromagnetic waves in a three-layer one- 

dimensional problem is simulated. An air layer is surrounded by a dielectric background 

with er = 4, and the layer interfaces are at x = 3 and x = 6 m. A source exciting Ey is 

located at x = 9.6 m, and the propagation of waves is simulated over a long distance from 

x = 0 to x = 153.6 m (or about 512A). Figs. 1(b) and 1(c) show that with a receiver at 

x = 150.0 m (or 468A away from the source), the FDTD algorithm has a large dispersion 

error of 8.5% even with a grid density of 32. The PSTD algorithm is accurate to within 

0.8% even with a grid density of 2. A similar numerical experiment for the MRTD for a 

propagation- distance of 150A in a homogeneous medium with a grid density of 2 shows 

that the dispersion error is up to 15.0%, as in Fig. 1(d). Other examples have been shown 
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Fig. 1. (a) Relative dispersion errors in K for the FDTD, MRTD, and PSTD algorithms, 

(b) PSTD (2 nodes/A) and FDTD (32 nodes/A) results for Ey at 468A away for the source 

in a 3-layer medium, (c) Relative numerical errors in (b). (d) PSTD and MRTD results 
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Fig. 2. (a)_rr-y projection of a 3-D problem with 4 buildings above ground and 2 objects 

underground, (b) Ez waveforms at the receiver array. 
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in [9] to validate the PSTD method for multidimensional inhomogeneous media. 

To illustrate the applications of the PSTD algorithm to large-scale problems, Fig. 2(a) 

shows a simple 3-D problem for the study of electromagnetic wave propagation in an urban 

environment. The dielectric constant is 4 for the earth, and 2 for the four buildings and two 

underground objects. A vertical electric dipole operates at a central frequency of 166.67 

MHz with a Blackman-Harris window time function. At the highest frequency 500 MHz, 

A is 0.3 m for er = 4, and the problem size is 128A x 128A x 128A. It is simulated by the 

PSTD with 256 x 256 x 256 nodes. The measured Ez at the receiver array is shown in Fig. 

2(b). 

This large-scale problem requires 1.359 G-bytes of memory, and 16.36 seconds of CPU 
time per time step on a 8-CPU HP SPP-2000 Exemplar. In comparison, if this problem 

is to be solved by the FDTD method with 20 nodes/A, it would require 1000 times more 

memory and roughly the same factor more CPU time. 

Conclusions 
The newly developed pseudospectral time-domain (PSTD) algorithm is compared to 

the FDTD and MRTD methods. In terms of spatial sampling, the PSTD method can be 

considered an optimal algorithm since it requires only two nodes per minimum wavelength 

because the Fourier transform (through an FFT algorithm) is used to represent spatial 

derivatives exactly up to the Nyquist frequency. The method is applied to solve an appar- 

ently unprecedented large-scale problem of size 128A x 128A x 128A. Further investigation is 

under way to optimize the PSTD method for problems with mixed scales (large structures 

with fine details) as well as problems with discontinuous tangential field components such 

as those near a metallic surface. 
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Abstract. We develop a pseudospectral multi-domain formulation for the accurate modeling of generic diffractive optical elements, 
here exemplified by off-plane waveguide holograms for the coupling between guided waves and freely propagating wavefronts. 

The individual elements entering the multi-domain formulation for the solution of the time-domain Maxwell equations is described, 
stressing the ability to accurately and efficiently handling very general geometric complexity and combinations of several materials. 

The efficacy of the overall scheme is illustrated by computing the time-domain solution of a plane waveguide problem and an 
off-plane waveguide coupler. 

1. Introduction. The well established and highly reUable fabrication techniques of in-plane semi-conductor 
laser has spawned intensive research into processes by which electromagnetic energy can be exchanged between the 
guided waves emerging from the laser and freely propagating wavefronts. Such waveguide couplers have been known 
for some time although their design have been fairly limited due to shortcomings in fabrication techniques. However, 
with the present day ability to reliably modify a waveguide surface with an accuracy of about 20 nm, using electron 
beam techniques and interference exposure processes, it is possible to fabricate very general wavefront modulators 
in the 1500 nm range of optical communication. The impact of such developments is potentially very large as 
it in principle allows for realizing integrated optical elements with properties similar to conventional holographic 
elements, i.e., multiple focal point or beam-shaping elements. 

While the fabrication of such off-plane waveguide holograms has become possible, the actual specification of 
the surface modulation remains a very significant challenge. The analytic tools for problems involving modulations 
of order of the wavelength are clearly insufficient. However, also computational modeling, using conventional 
low order schemes, of such elements is nontrivial and in most cases not possible. Since the optical elements are 
characterized by being composed of several layers of complex materials and often spanning hundreds of free-space 
wavelengths, low order time-domain as well as frequency domain methods fail to accurately reproduce the details 
of the out-coupled wavefronts. The main reason for this shortcoming lies in the inability to accurately model the 
phase behavior which is critical for the correct computation of the out-coupled wavefronts. 

The quest for accurate modeling of the phase properties of the waves over several hundred wavelengths suggests 
that the use of high-order methods, and in particular pseudospectral methods, is not only an option but a necessity 
as has been shown recently for problems involving scattering by electrically large general objects [1, 2]. These 
studies has lead us to develop a time-domain pseudospectral multi-domain scheme for the general two-dimensional 
forward diffraction problem sketched in Fig. 1. The modulation of the element/vacuum interface manipulate 
the guided wave and allows for a coupling of waveguide energy into free-space. The actual amplitude and phase 
modification of the scattered fields depends critically on the details of the modulation of the waveguide coupler, 
hence placing severe constraints on the properties of the numerical scheme. We emphasize that while we shall focus 
the attention on off-plane waveguide holograms, the computational framework developed here is applicable for the 
modeling of a much broader range of waveguide phenomena. 

The remaining part of this paper is organized as follows. In Sec. 2 we discuss the problem from a electromagnetic 
point of view by introducing Maxwells equations, boundary and initial conditions. Section 3 is devoted to a detailed 
development of the various elements that enter the computational framework while Sec. 4 contains a number of 
test cases. In Sec. 5 we conclude with a few general remarks. 

2. The Physical Picture. A typical off-plane waveguide hologram, as depicted in Fig. 1, consists of a 
number of layers of dielectric material and we shall subsequently assume that all materials can be considered 
lossless, homogeneous and non-magnetic. For the guided wave to exist we must assume that 1 < TII < 713 < n2 and 
for simplicity we .shall here assume that also rai = 1 and the modulation takes place directly in the waveguide rather 

" The work of the first author was partially supported by DARPA/AFOSR grant F49620-96-1-0426, DOE grant DE-FG02-95ER25239 
and NSF grant ASC-9504002. 
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(E1, H1) 

(Es, Hs) 

FIG. 1. Typical configuration of a multi~layer diffractive optical element. 

than in the cladding as illustrated in Fig. 1. The width of the waveguide, d?, determines whether the waveguide 
is a single- or a multi-mode waveguide and the width of bulk material, n3, is assumed to be sufficiently large that 
the evanescent waves are undisturbed by the lower edge of the element. 

We shall restrict the attention to the two-dimensional transverse electrical (TE) case for which Maxwells 
equations take the form 

(1) at 
c dEy 

Zo dx 

8HX 

at 
c dEy 

Y0~aT 
9Ey _ 
at 

1   (dHx 

n2 \ dz 
dH2 

dx 

where Hz and Hx represent the dimensional magnetic fields in the plane while Ey refers to the perpendicular 
component of the electric field. We have also introduced the free space impedance, Zo = \fpo/£o, and the vacuum 
speed of light, c = 1/^/eößö, where £o and /xo represents the free space permittivity and permeability, respectively. 
The index of refraction, n(z,x), is related to the relative permittivity of the dielectric material as e = eT£o = »2eo. 

To arrive at the non-dimensional form of the equations we introduce the new variables 

x = x/A ,  y = y/\ ,  t = tit/\ = iv . 

Here A is the free space wavelength of the incoming field, having a frequency, v. The field components are similarly 
normalized as 

Hx 
= Hx 

yielding the non-dimensional TE equations 

Hy = Hy ,  Ez = ZQ  EZ 

(2) 

which we shall consider in what remains. 

8HZ 8E, 
at dx 

dHx dEy 

at dz 
dEy 1   / 
m _2   1 

8HX     8HZ\ 

dz       dx )   ' 
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As the materials are considered to be non-magnetic and lossless, the field components, HZ,HX and Ev, are 
subject to the interface conditions 

(3) El=El • nxH1 = nxH2 ,  n-Hl=n-H2 , 

where the superscripts refers to the field components in two neighboring materials while n signifies a unit vector 
normal to the interface. Hence, the tangential electric field, Ev, as well as both the magnetic field components are 
continuous for the particular case considered here. 

In a typical scenario, the diffractive element is integrated with a laser such that the incoming field itself is 
a guided wave. Hence, it is only reasonable to model the incoming field as the non-dimensional analytic 3-layer 
solution given as 

{qe-2">x x>0 
h sm{27Thx) + q cos(2xfcr) x £ [0, -d2]     , 

-p [cos(2rtd2) + qh'1 sm(2irhd2)] e
2»iK=+*)    x < -d2 

and 

„ [ e-2TqI x>0 
(5) Ey = -— = Cgi2^t-nMz) x )   cos{2nhx) - qh'1 sin(2i/lx) x G [0, -d2]     , 

™cff [   [cos{2-Khd2) + qh'1 sin(2nhd2)] e2'"'1-1*'1^    x < -d2 

where C signifies an arbitrary amplitude factor. Moreover, we have introduced 

where the effective index of refraction, nea, is given as the solution to the eigenvalue equation 

h(p + q) 
tan(27r/id2) = 

h2 —pq 

Provided rf2 is chosen appropriately, this equation only has one solution thereby guaranteeing single-mode operation 
of the waveguide. 

3. The Computational Framework. The construction of the pseudospectral multi-domain scheme for the 
time-domain solution of Maxwells equations within a general diffractive optical element involves the combination of 
a number techniques. The key issue in the developments presented here is centered around the spatial approximation 
scheme while Maxwells equations is advanced in time using a low-storage 5-stage 4th-order Runge-Kutta scheme 
[3]. Although it requires an extra step for the completion of the step as compared to the standard 4th-order 
Runge-Kutta scheme it has a slightly larger stability region, implying that the total work is kept about constant. 
However, only one additional storage level is required for the implementation the scheme. The time-step is chosen 
such as to obey the CF£-criterion. 

In what remains of this section we shall discuss the details of the spatial scheme for the solution of Eq.(2), 
subject to the prescribed initial and boundary conditions. 

3.1. Chebyshev Spectral Methods. The scheme is based on Chebyshev collocation methods, which, due 
to their superior approximation properties, are widely used for the solution of partial differential equations. Within 
the two-dimensional unit square, [—1,1]2, this implies that we seek solutions to Eq.(2) on the form 

N    N 

{lN,Nf)(z,x) = ^^/(Zi.ZjOSiMM1)    > 

where the Chebyshev-Gauss-Lobatto grid points are given as 

(i,i)6[0,JV]:   Zi = -cos(^)   ,x. = -cos(j0    , 
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and the interpolating Chebyshev-Lagrange polynomials are given as 

_ (l-^TfrMt-i)*1 _ (i-x2)r^(x)(-i)w 

where Co = c^r = 2 and c; = 1 for 1 < i < N — 1 and TN(Z) refers to the Chebyshev polynomial of order JV. 
To seek approximate solutions to a partial differential equation we ask that the equation is satisfied in a 

collocation sense, i.e., at the collocation points. Hence, we need to obtain values of the spatial derivatives at the 
collocation points as is done by approximating the differential operator by matrix operators with the entries given 
as 

i.e., the computation of derivatives thus becomes matrix-multiplies. The explicit expressions of the entries of the 
matrix operator and further details on collocation methods, we refer to [4]. 

To increase the robustness of the scheme we find it useful to introduce a very weak filtering of the solution and 
employ an exponential filter of the type 

^{exp[-a(^y] 
0 < i < Nc 

Nc<i<N 

where Nc is a cut-off mode number, 7 is the order of the filter and a = — In £M with ZM being the machine 
accuracy. To ensure a minimal effect of the filter we choose the order of the filter as 7 = JV — 2, i.e., it scales with 
the resolution. The filtering along z may conveniently be expressed as a matrix operator, F, with the entries given 
as 

and likewise for filtering along x. 

3.2. Maxwells Equations on Curvilinear Form. As mentioned briefly in the previous section, the use 
of a tensor product approximation requires that /(z, x) is defined on a rectangular grid. The first step towards 
a geometrically flexible pseudospectral scheme is to circumvent this restriction and extend the use of polynomial 
expansions to the general curvilinear quadrilateral domain. We assume the existence of a smooth non-singular 
mapping function, $, relating the (z,x) coordinate system to the general curvilinear coordinate system (£,1)) like 

£ = £(z,x)   ,    T] = T]{Z,X)    . 

We shall return to the actual specification and construction of the smooth map, *, shortly. Adapting this formu- 
lation to Eq.(2) yields the hyperbolic system 

(6) g + A<vOg+A(v„g-0, 

where we have the state vector, q = (Hz,Hx-,Ey)
T. The general operator, A(n), with n = inz,nx) representing 

the local metric, is given as 

A(n) = 
0 0 nx 

0 0 -nz 

n^n-2    —?izn""2      0 

where we recall-that n refers to the local index of refraction.   This operator diagonalizes under the similarity 
transform, A(n) = S_1(n) A(n) S(n), where the diagonal eigenvalue matrix, A(n), has the entries 

(7) A(n) = |n|diag [-re-1,0, n-1] 
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corresponding to the characteristic velocities of the waves being counter-, non-, and co-propagating along the 
normal vector n with the local speed of light. Here we have that |n| represents the length of the vector n, such 
that n = \n\{nz,nx). 

The diagonalizing matrices, S(n) and S_1(n), take the form 

,S"1(n) = - S(n) = 
—nx    nz 

nz     nx 

n-1     0 

—nx 

nz 

—n~ 

from which we obtain the characteristic variables 

(8)                                       R = S-1(n)9 = 
' Ri 

R3 

—nx nr 

2nz 2ft 
—nx nr 

-nxHz + nzHx + nBy 

2nzHz + 2nxHx 

-nxHz + nzH, - nEy 

Besides revealing information about the dynamics of the fields, the identification and the use of the characteristic 
variables takes, as we shall see shortly, an integral role in the specification of the multi-domain scheme, being the 
topic of the following section. 

3.3. The Multi-Domain Formulation. We wish to solve Eq.(6) within a general computational domain, 
Ü £ R2, in the (,z,a:)-plane. As we have briefly discussed, the most natural and computational efficient way 
of applying polynomial expansions in several dimensions is through the use of tensor products. However, this 
procedure requires that the computational domain can be smoothly mapped to the unit square. To surround 
this limitation, we construct Q using K non-overlapping general curvilinear quadrilaterals, D* c R2, such that 
n = Uf-i D*. 

The advantages of such an approach, besides from providing the geometric flexibility, are many. In particular 
in connection with pseudospectral methods, where the multi-domain framework results in a lower total opera- 
tion count and higher allowable time-step while providing a very natural data-decomposition, well suited for the 
implementation on contemporary parallel computers. 

Once we have split the global computational domain into K subdomains, we need to construct the map, 
$ : D —» I, where I C R2 is the unit square while we have the Cartesian coordinates, (z,x) € D, and the 
general curvilinear coordinates, (£, 77) € I being related through the map, (x,y) = $({,7;). To establish a one 
to one correspondence between the unit square and the general quadrilateral we construct the local map for each 
subdomain using transfinite blending functions [5, 6]. This allows for the computation of the metric of the mapping 
and outward pointing normal vectors at all points of the enclosing edges of the quadrilateral. 

Within the multi-domain setting we must solve K independent problems in the individual subdomains. How- 
ever, to obtain the global solution we must ensure that information is passed between the subdomains in a way 
consistent with the dynamics of Maxwells equations. In the particular scenario considered here, and illustrated in 
Fig. 1, we encounter two different types of interfaces, requiring different patching techniques. 

The patching across boundaries of domains between regions with different material properties is accomplished 
by using the physical conditions on the field components, Eq.(3), which are enforced strongly. 

For the patching of subdomains having the same material properties we utilize that the system, Eq.(6), is 
hyperbolic. Hence, it is only natural to transfer information between the various subdomains using the characteristic 
variables, Eq.(8), which are convected along the normal, n, with a speed given by the diagonal elements of A(?r), 
Eq.(7). Once the outward normal vector at the enclosing boundary of the subdomain is known, as it is once the 
map, *, is constructed, we may uniquely determine which characteristics are leaving the subdomain and which are 
entering and thus needs specification. Indeed, we observe from the eigenvalues of A(ra), Eq.(7), that while R3 is 
always leaving the domain and therefore needs no boundary conditions, R is always entering the computational 
domain and requires specification to ensure well-posedness. Thus, A3, leaving a domain, supplies the sought 
after boundary conditions for R\ in the neighboring domain and reversely for fli in the first domain. For the 
non-propagating R2 we simply_ use the average across the interface. Once the characteristic variables have been 
adjusted, the physical fields are recovered through the relation S(n)R = q. This procedure is applied along all 
interface points, including the vertices where it is done dimension-by-dimension, to arrive at the global solution at 
each times-step. As we shall see shortly, this procedure of patching hyperbolic systems is stable as well as accurate. 
Moreover, in a parallel setting the communication between subdomains grows only like the surface of the geometric 
building block rather than the volume. 
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FIG. 2. JHusirafion o/ the plane waveguide test case. On the left is the grid illustrated, with the high-index waveguide just below 
x = 0. On the right is the Hz shown at an arbitrary time. 

3.4. Far Field Boundary Conditions. The introduction of the perfectly matched layer (PML) methods 
[7] has spawned significant research into such methods. However, serious problems with these types of boundary 
conditions has recently been exposed [8] for the two-dimensional PML methods and a number of alternatives have 
subsequently appeared in the literature. 

In [9], a well-posed PML scheme was introduced and shown to perform well in connection with pseudospectral 
multi-domain schemes. We have chosen to use that particular scheme after adapting it to the situation of general 
dielectric media. The implementation of the scheme is done in the total-field/scattered-field formulation to enhance 
the efficiency of the layers, being given as 

dH, 

m 
dE, 
dt 

at 
m 
at 

_dEy 
dx 

dEy 

dz 

- 2<7XHZ - <TXPX 

- 2<TZHX - OzPz 

'y_     1   (dHx     dH,\       , , 

dQz = °zHx      ^ = -azQz - 7T2HX 

rid 
= <r*Hz      --p = -axQx - rT2Ez 

Note that the additional degrees of freedom, making possible the perfectly matched layer property, is introduced 
through a number of auxiliary fields rather than an unphysical splitting of the electromagnetic fields. 

The PML assumes a rectangular interface bounded by \z\ < zo and \x\ < XQ and the absorption profiles takes 
the polynomial form 

<rz{z) = Cz{\z\ - zaf ,   <rx(x) = Cx(\x\ - a*,)" , 

where the constants, Cz and Cx, are tunable for optimal performance.  We have found that using p = 4 in the 
profiles yields a good balance between smoothness and damping efficiency. 

4. Numerical Experiments. Combining all of the elements described in the previous section into a general 
computational framework yields a model with significant geometric flexibility. Moreover, since high-order schemes 
are used in space as well as time one can hope to be able to accurately model electrically large waveguide structures 
in an reliable and efficient manner. 
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In the following we shall present two test cases with the purpose of validating the performance of the scheme 
and illustrate the prospects for addressing general problems of interest to science and engineering. 

4.1. The Plane 3-Layer Waveguide Problem. To validate the accuracy and overall performance of the 
scheme, we consider a 3-layer plane waveguide as depicted in Fig. 1, assuming only that no = ni = 1, i.e., vacuum is 
used as the cladding material. The waveguide itself is composed of a layer with n2 = 1.2 of a thickness d.2 = 0.6637A 
while the bulk-material is assumed to be infinite with an index of refraction of n3 = 1.1. These dimensions and 
materials ensure that only the fundamental mode can exist in the waveguide. The exact solution to this problem 
is given in Eqs.(4)-(5) with the effective index of refraction being nefr = 1.1369. 

As our test case we choose a 6A long fragment of the otherwise infinite waveguide and assume that the wave 
pattern are fully developed, i.e., the fields given by Eqs.(4)-(5) are assumed to fill the waveguide. In Fig. 2 we 
show the grid for N = 16 in each subdomain and the total field region, in which the computation is conducted, as 
well as the scattered field PML layer is shown. 

TABLE 1 
Error in the computation of the plane waveguide solution ait— 10. 

N •tvppw A* £M(fl«) Lco(Hx) Loc(Ey) 

16 7.3 1.83E-2 1.27E-2 4.53E-2 3.55E-2 

20 9.1 1.19E-2 1.28E-4 3.31E-4 3.23E-4 

24 10.9 8.27E-3 1.53E-5 7.94E-5 7.45E-5 
32 14.5 5.05E-3 5.57E-6 3.12E-5 2.68E-5 

The exact solution is advanced 10 periods after which the global Loo error of the three field components is 
measured. In Table 1 we give the results, clearly illustrating the spectral convergence when increasing the number 
of modes, N. One also notes that using as little 9 points per wavelength, Nppw, in the waveguide results in 
very accurate field computations, illustrating the superior numerical properties of the pseudospectral time-domain 
methods. 

4.2. Off-Plane Waveguide Holograms. As a second, and more realistic, test case we have chosen to con- 
sider a situation in which the waveguide/vacuum interface of the plane waveguide considered above is modulated 
as 

0.25 exp M' sin(27rz) 

i.e., a tapered periodic pattern. We shall also assume that the waveguide now spans 20A. The full grid, including 
the surrounding PML layer region, consists of 96 elements and is shown in Fig. 3 with the resolution being taken 
to JV = 20. To ensure that the initial conditions are divergence free we assume that the waveguide is empty at 
t = 0 at which point a guided wave is entering from the left. 

In Fig. 3 we show the Hz component of the field after about 66 wave periods, clearly illustrating the exchange 
of energy from the guided wave mode into a wavefront propagating freely away from the holographic element. 
Although not shown, the situation for the remaining field components is similar, hence confirming the ability of the 
developed scheme to handle problems of interest for the construction and fabrication of integrated optical elements. 

5. Concluding Remarks. It has been the purpose of this paper to develop a pseudospectral time-domain 
framework suitable for the accurate and efficient modeling of very general waveguide couplers. It also constitutes the 
first of example of a pseudospectral time-domain method for problems in computational electromagnetics involving 
general geometries and several different materials. 

As we have confirmed through computational tests, the proposed pseudospectral time-domain framework is well 
suited for a variety of generic problems involving guided waves, coupling phenomena and wavefront modulation. 
Not only does the very accurate modeling of the phase behavior allow for a detailed computation of problems 
evolving over many periods of time and spanning many wavelengths. The requirement of only 7-9 points per 
wavelengths also significantly reduces the computational requirements and allows for addressing large problems at 
even moderately sized workstations. 
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a) 

b) 

FIG. 3. Example of a pseudospectral time-domain modeling of an off-plane waveguide hologram,   a) The computational grid,  b) 
The computed Hz component att = 66. 
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Abstract 

This paper presents novel Plane Wave Time Domain (PWTD) algorithms which accelerate the computational 
analysis of transient surface scattering phenomena. The cost of performing a transient analysis of scattering 
from a body modeled by Ns spatial basis functions for a duration of N, time steps scales as 0(N,N]) if 
classical time domain integral-equation based methods are used. This cost can be reduced to 
0(N,N',3lo°Nx) and 0(N,NslogNs) using the proposed two-level and multilevel PWTD schemes, 
respectively. These algorithms are the time domain counterparts of frequency domain fast multipole methods 
and make feasible the practical broadband analysis of scattering from large and complex bodies. The 
two-level PWTD algorithm is described in the context of acoustic scattering and numerical examples 
validating the approach are presented. 

1. Introduction 

Recently, the scientific community has expressed a renewed interest in the analysis of short-pulse 
radiation and transient scattering phenomena. The characterization of transient wave phenomena is of 
paramount importance in disciplines ranging from electromagnetics to geophysics. Efficient computational 
analysis of these phenomena hinges upon the availability of fast time domain algorithms. 

Time Domain Integral-Equation (TDIE) based solvers have been applied to the analysis of acoustic and 
electromagnetic scattering problems [1-4]. The TDIE techniques exhibit a number of desirable 
characteristics: (0 they only require a discretization of the scatterer surface, (if) they implicitly impose the 
radiation condition, and (//;') they are devoid of grid dispersion errors. Unfortunately, these techniques have 
long been conceived as intrinsically unstable and computationally expensive when compared to their 
differential-equation counterparts. However, recently, progress towards stable TDIE based schemes has been 
reported [4]. In contrast, literature on techniques for reducing the computational complexity of these TDIE 
techniques is virtually nonexistent. This is in spite of the fact that the last decade has witnessed significant 
acceleration in frequency domain integral equation solvers with the advent of the Fast Multipole Method 
(FMM) [5], the impedance matrix localization technique, the multilevel matrix decomposition algorithm, etc. 
Although the structure of transient wave fields has been well studied, to our knowledge no TDIE algorithms 
with reduced computational complexity have been reported. 

Classical TDIE based schemes for analyzing transient wave phenomena suffer from a high 
computational -cost. Consider a surface scatterer of area 5 which resides in a homogeneous three- 
dimensional space and which is excited by a pulse whose temporal spectrum vanishes for oi > <umax. 
Integral-equation based approaches model the fields scattered from the surface as those produced by induced 
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surface sources. Since the sum of the incident and scattered fields satisfies certain boundary conditions on the 
surface of the scatterer, an integral equation relating the incident field on the scatterer to the field produced by 
all current and past sources can be constructed. Assuming that the induced surface sources reside on the 
scatterer surface for a duration T, after which they become vanishingly small, the source distribution can be 
discretized and represented in terms of JV, °cS(<umax/c)2 spatial and N, cc7ö>m!K temporal samples. Here, 
c denotes the wave speed in the medium. Discretization of the integral-equation results in a time marching 
procedure for computing the induced sources. Updating the source distribution requires the computation of 
the field at Ns observers due to all JV, sources. Since this computation has to be performed for all time 
steps, the computational complexity associated with the classical TDIE algorithms scale as 0(N,N*). 

This paper introduces diagonalized time domain translation operators which permit the rapid evaluation 
of transient fields produced by surface-bound source distributions. These diagonalized translation operators 
can be used in tandem with classical integral-equation based techniques for analyzing transient scattering 
phenomena. The computational complexities associated with the solution of large-scale surface scattering 
problems using the proposed two-level and multilevel fast PWTD algorithms scale as 0(N,N*'y logNs) and 
0(N,Ns logiVv), respectively. 

The organization of this manuscript is as follows: Section 2 introduces a diagonalized translation 
operator for time domain fields that satisfy the scalar wave equation, both for continuous and sampled field 
representations. An implementation of two-level PWTD scheme for analyzing acoustic scattering problems 
together with a complexity analysis and some numerical examples are presented in Section 3. Section 4 
presents our conclusions. 

2. A Diagonalized Time Domain Translation Operator 

In this section, a plane wave representation for transient wave fields is derived together with space-time 
constraints that ensure its validity and applicability in a time marching algorithm. It is shown that the plane 
wave representation has a diagonalized translation operator. A closed-form expression for the translation 
function for sampled field representations is also presented. 

Consider a source distribution g(r,t) residing in a source sphere of radius Ä, centered around rcW 

and radiating in an unbounded, nondispersive, and homogeneous medium. The field u(r,t) produced by 
q(r,t) is to be evaluated at observers distributed throughout an observation sphere of radius Rlt centered 
around rc(°'. Let Rc = rc(o) - rc(s) denote the vector connecting the source and observation sphere centers. 
Without loss of generality, it is assumed that R0 = RS, and that Rc =Rci, where Rc =|RC|. 

The field u(jj) satisfies the wave equation 

V2»(r,0-4»('-,0 = -?(^'). CD 
c 

where d]  denotes second derivative with respect to time.   The field at an observer located at r can be 
succinctly expressed as 

/    \     r   . i ,  \   5(r',t-\r-r'\/c) 

where V is the-volume enclosing the source, * denotes time convolution, and S{) is a Dirac impulse. If 
q(r,t) consists of a point source located at r" in the source sphere with a time signature /(/), i.e., if 
g(r,t) = /(/)£( r - r"), then the field observed at a point r" in the observation sphere is given by 
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4-,/)=^-r;/c), 0) 
4nrs 

where r° =|r°| and r° =r" -r'*. Henceforth, to simplify the notation, the positions of the source and 
observation points relative to their respective sphere centers are denoted by ?'=rl-r'10 and 
r°=r"-rc(°). 

The computational cost associated with the evaluation of transient fields via Eqn. (3) due to multiple 
sources at multiple observers can be reduced significantly provided that the fields are represented in terms of 
a plane wave basis. As a first step towards representing the field u{r" ,t) as a superposition of plane waves, 
the source signal q(r,t) of duration T is artificially broken up into L subsignals q,(r,t), l = 0,...,l-\, of 
duration Tx - TjL such that 

?(r,0 = l?,(r,0 = S(r-r'j£f,(t), (4) 
feO 1=0 

where /,(/) = 0 for t<lTs and t>(l + X)Tx. Let u,{r° ,t) denote the field at r" due to q,(r,t). Then, 

w(r",/) = £«7(r°,/). 
/.o 

To arrive at a plane wave representation of M,(r",r), consider the field iJ)(r",0 defined by 

27,(r",/)=—%- \d<j> frfösinö 4 -kr" /c)* 4 -k-Rc/c)*?,(k,/), (5) 
8ff"c o      o 

where k = isin#cos^ + ysinösin^ + zcosö, the integration is over a cap of the unit sphere for which 

0 < 0M , and <7;(k,() is the Slant Stack Transform (SST) of the source distribution q,(r,t) defined by 

q,{kt)= jdr's(t + k-r/c)*qi{r',t)- (6) 
r, 

The SST maps the source distribution into a time dependent plane wave emanating form the source sphere 
and propagating along k. Henceforth, plane waves obtained by an SST will be termed as outgoing rays. For 
the point source configuration specified above, the SST reduces to 6{t + k-r"je)* ft(t) and the integral in 
Eqn. (5) can be evaluated explicitly to yield [6,7] 

ff,(r%0 = -^-/,f/-£l--4-r Wiz-^cos^WrV')|. (7) 
4ir;     ^      c )   %-K'r" I        \      c J 

where 0[m(0',r°,r*) is the angle between the vector r" and the vector extending to the boundary of the 
integration cap from r *. In Eqn. (7), the first term on the right hand side corresponds to the true observed 
field M,(r",/). Note that, were it not for the second term, which will be referred to as the ghost signal, 
»;(r",0 would be identical to u,(r",/). If the ghost signal can somehow be removed from u,{r" ,t), Eqn. 
(5) implies that the true observed field can be constructed as a superposition of plane waves using techniques 
that are akin to those underlying the frequency-domain FMM. 

To derive-a scheme that retains only the true observed field by time gating w,(r",;), the following 
observations are in order. From Eqn. (7) it follows that the ghost signal present in u,(r",r) vanishes after 
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tf = ^-cos^ + (/ +1)7; <  {Rc cos0int + 2Rs)/c + (/ +1)1, (8) 
c 

where 6'mi„ =min[0i'nt(^',r",r*Jj, and the upper bound follows from geometrical considerations. The fields in 
the observation sphere coincide with the true fields after the ghost signal has vanished, i.e. / > //*""'. Also, 
the true field does not reach the observation sphere before 

t'rm=(Rc~2Rs)jc + lTs. (9) 

Therefore, provided that t',"1" > tf°", all ghost fields in the observation sphere cease to exist before the true 
signal arrives. In addition, if t',"°" >(! + \)TS, all source activity related to the /''' time interval ends before 
the true signal reaches any observer. Hence, it is possible to obtain a ghost-free solution via Eqn (5) by 
choosing Ts and 9iM such that the conditions t',""* >tf°" and t'"'"' > (/ + \)TS are satisfied. 

The above observations are the basis for the construction of the PWTD algorithm in which evaluation of 
Eqn. (5) is interpreted as a three-stage process. In the first stage, outgoing rays are formed by calculating the 
SST of the source distribution using Eqn. (6). The second stage consists of translating the outgoing rays from 
the source sphere to the observation sphere. This is accomplished by convolving the outgoing rays with the 
translation function - d,S(t - k • Rc/c)/8^2c. In the PWTD algorithm, the removal of the ghost is achieved 
by performing the translation at t = t'[°"'. The savings in computational cost are due to the fact that the 
translation operation maps an outgoing plane wave to another plane wave that travels in the same direction, 
i.e., the translation operator is diagonal. In the third stage, the translated rays are projected onto the observer 
location yielding the true field «,(r",0 . 

In practice, Eqn. (5) needs to be evaluated numerically in a discrete setting. Hence one needs to work 
with sampled field representations which has been a topic of ongoing research [8]. This leads to an 
expression for 2)(r",r) of the form 

»/(r°>')=Z  lLw„A'-k,„ ■f0/c)*.rm,(i)*ÜK,,n'l do) 

where w„„, are the integration weights, k„„, denote the integration directions, the translation function .P~llm(0 

is given by 

■r^---^A+AC0S~'i) for TCOS^'4' (u) 

and ¥„(#) is a spatially bandlimited version of J(r-k-Rc/c). In [6] it is shown that &~m(t) can be 
expressed as a polynomial in t and that the error incurred in the numerical evaluation of Eqn. (10) can be 
reduced to arbitrary precision. 

3. Implementation and Complexity Analysis of an Algorithm for Fast Analysis of Acoustic 
Scattering 

To illustrate the use of the PWTD algorithm in conjunction with the TDIE based schemes, a two-level 
algorithm for the analysis of acoustic scattering from rigid bodies is presented next. Consider a rigid body 
bounded by a surface 5. Let this body be illuminated by an incident pressure field P""'(r,f) . Then the total 
pressure field P(r,t) on S satisfies the integro-differential equation 

P(r,0=P""(r,/)+ \dr'P{r',t)*V-V'S(r'''~)r~yC\ (12) 
>•• 4;rr - r 
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where n' denotes the outward normal to 5 at r', and S* indicates that the integral is evaluated as r' -» S 
from outside the body. Conventionally, a solution to Eqn. (12) is obtained numerically using the Marching- 
On-in-Time (MOT) scheme. In this method, S is discretized by a suitable triangulation and P(r,0 is 
expanded as a weighted superposition of Nx spatial and N, temporal basis functions. Applying spatial 
Galerkin testing to the resulting equation at the /* time step yields a matrix equation which can be solved for 
the unknown expansion coefficients for that time step. Hence, all the expansion coefficients can be found by 
starting at _/' = 1 and solving a matrix equation of the form Ax^ = b7 at each time step. The most expensive 
part of this algorithm is synthesizing the part of the right hand side vector b^ obtained by evaluating the 
fields over JV, testing functions due to past pressure fields represented by N, basis functions, at each time 
step. This process is equivalent to evaluating the integral in Eqn. (12) and has a computational complexity of 
0(N*) per time step. However, the similarity of the integral in Eqn. (12) to the one in Eqn. (2) suggests that 
evaluation of this integral can be accelerated by utilizing the PWTD algorithm. 

The first step in arriving at a reduced complexity algorithm is to divide the scatterer into Ng 

subscatterers, each of which can be enclosed in a sphere of radius Rs. The sizes of the subscatterers are 
chosen such that approximately M, = N,/N spatial basis functions are contained in each sphere. Then, the 
interactions between sufficiently remote subscatterers are computed using the PWTD algorithm and all other 
interactions are accounted for by the conventional MOT scheme. 

Although the kernels of the integrals in Eqns. (2) and (12) are different, the PWTD part of the 
accelerated scheme still consists of three-stages: forming the outgoing rays for all spheres, translating the 
outgoing rays to observation spheres at / = /,'""", and projecting the translated rays onto the observers. 
However, it can be shown that for the kernel of the integral in Eqn. (12), the SST takes the form 

?{k,t)= $dr'(n'-k)s(( + k-r/c)*P(r',t), (13) 
v, 

and the translation function becomes d,S^nm(t)jc. It should also be noted that applying the PWTD algorithm 
in a multiple sphere setting permits further savings since (;') the outgoing rays from a source sphere can be 
reused to calculate the fields at different observation spheres, and (//) rays that are translated to an observation 
sphere from different source spheres are superimposed before they are projected onto the observers. 

To derive the computational complexity of a surface scattering analysis using the resulting two-level 
algorithm, the total cost CT is identified as the sum of two components. The first component CNr is due to 
the direct analysis of the interactions between nearby subscatterers using the MOT algorithm whose 
computational complexity scales as 0(N,M*) per group. Since, only a few nearby groups are associated 
with each group, it is found that 

CNF « N,M}NS °c N,NfM,. (14) 

The second cost component is associated with computation of interactions between remote groups 
using the three-step PWTD algorithm and is considered next. The cost of forming outgoing rays, CrF, is 
proportional to the number of sources in a group, the number of ray directions, the number of time step, and 
the number of groups. It can be shown that the number of ray directions associated with each sphere is 
proportional to Ms. Hence, 

Cj,;.- cc N,M;NS °c N,NSMS. (15) 

To derive an expression for the cost of translation step, it is assumed that a Ts which is proportional to Rjc 
and which is of duration M, = N,/L time steps is chosen. Then, the length of both the outgoing rays and the 
translation functions are proportional to M,. Hence, the translation process, which is the convolution of 
outgoing rays with translation functions, can be accomplished in 0(M, logM,) operations using fast Fourier 
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transforms.   Furthermore, noting that for surface scatterers M, cc Ts cc Rs cc M'J2, the cost of performing 
translations between N2 group pairs, for L time intervals is seen to be 

N. 
C2

FF°zNlLM,\ogM,<xN, —H logM, (16) 

Since projecting incoming rays onto observer locations is the reverse process of generating outgoing rays, the 
cost of the last step CJ-F is also proportional to N,NSMS. 

The total cost is given by CT = CNF + CFF + C2
FF + CFF . It can be verified that CT scales as 

0(N,N*r' logJV,) if JWV is chosen to be proportional to JVj'3. Furthermore, it can be shown that casting this 
algorithm in a multilevel framework yields a computational complexity of 0(N,Nx log/V,) [6]. 

In order to validate the applicability of the above algorithm, surface pressure on a square cylinder 
illuminated by a Gaussian plane wave propagating along the -z direction is computed using both the 
classical and accelerated MOT methods. The scattered surface pressure observed at a point on the top of the 
cylinder is plotted in Figure 2(a) for both solutions. Figure 2(b) shows the percent difference between the two 
solutions normalized to the peak amplitude of the scattered surface pressure. As a second example, scattering 
of a similar incident field from an almond modeled with 4900 spatial basis functions is analyzed. Figures 
3(a) and 3(b) compare the total surface pressure at a point on the almond and the normalized backscattered far 
field, respectively. It is seen that the results are in excellent agreement. It can be shown that the accuracy of 
the simulation can be controlled by the various approximations invoked in the PWTD algorithm. 

4. Conclusions 

This paper presented a PWTD scheme that permits the fast computation of transient fields radiated by 
surface bound sources. This scheme relies on diagonalized translation operators and can be considered the 
time domain counterpart of the frequency domain FMM. The PWTD scheme complements integral-equation 
based source updating methods and reduces the computational complexity associated with the analysis of 
surface scattering phenomena from 0(N,N2) to 0(N,N4,n logN,) for two-level and to 0(N,NJogNs) for 
multilevel algorithms. The practical implementation of the PWTD algorithm has been elucidated, and 
examples illustrating its accuracy and application to acoustic scattering problems have been presented. 
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(a) (b) 
Figure 1. Transient scattering of a Gaussian plane wave with significant spectral content up to / = 115.0z 
byalxlxlOm square cylinder modeled by 612 unknowns. (c = 343m/s) (a) Scattered field observed at 
the top. (b) Percent difference between the two solutions normalized to maximum scattered field amplitude. 
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(b) 
Figure 2. Transient scattering of a Gaussian plane wave with significant spectral content up to / = 515Hz 
by a 4900 unknown almond that fits in a box of 5 x 2 x 0.5m . (c = 343m/s) (a) Total pressure observed near 
the front end. (b) Normalized backscattered far field |r|P(r,f). 
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Abstract 

This paper presents a fast algorithm for solving time-domain surface integral equations commonly encoun- 
tered in electromagnetics. The proposed algorithm is based on plane wave time-domain expansions of radiated 
fields [1] and augment classical Marching-On-in-Time (MOT) method for solving the magnetic field surface 
integral equation. The computational cost associated with this algorithm scales as 0(NtNs' logJV3) as op- 
posed to O (NtNs), where Nt is the number of time steps and Ns denotes the number of spatial samples used 
in discretizing the current on the scatterer. Numerical results demonstrating the applicability of the proposed 
solvers to the analysis of transient scattering from electrically large structures are presented. 

1 Introduction 
Development of techniques for the analysis of transient wave phenomena is a topic of renewed interest in a number 
of disciplines, including computational electromagnetics. Most popular analysis tools are differential equation 
based. However, these methods depend on volumetric discretization of the scatterer, and when, applied to surface 
scatterers the computational cost associated with these techniques scales unfavorably. On the other hand, time- 
domain integral equation (TDIE) techniques only require a discretization of the scatterer surface. Until recently, 
these methods were thought to be intrinsically unstable and computationally expensive. In the last few years a 
considerable research effort has been devoted to the stabilization of the TDIE techniques [2, 3, 4], and recently 
Walker [4] introduced an implicit scheme which alleviates the instability problem to a large extent. Thus, reducing 
the computational complexity of TDIE schemes would yield an even more viable approach for analyzing transient 
scattering from electrically large structures. 

The problems associated with TDIE methods are not altogether a-similar to those overcome by the Fast 
Multipole Method (FMM) in frequency domain computations. Recently, an algorithm was introduced which 
enables fast computation of transient scalar wave fields by relying on the decomposition of the radiated field into 
transient plane waves [1]. It was theoretically shown that use of this algorithm in conjunction with classical time- 
stepping integral equation schemes significantly reduces the computational complexity associated with the analysis 
of scattering from large surface structures. Furthermore, this algorithm has been implemented in conjunction with 
the MOT scheme for the electric field integral equation, and is being presented elsewhere [5]. 

This paper presents an algorithm designed to accelerate the analysis of transient electromagnetic scattering from 
large perfectly electrically conducting surface scatterers residing in free space. This algorithm complements classical 
MOT scheme for solving Magnetic Field Integral Equations (MFIE). Also, computational results illustrating the 
usefulness of this algorithm in analyzing transient scattering from electrically large structures are presented. 

2 Formulation 
In this section, the MFIE for analyzing transient electromagnetic surface scattering phenomena is introduced. An 
MOT scheme for solving these equations is presented, and the Plane Wave Time Domain (PWTD) Method for 
accelerating the solution process is elucidated. 

2.1    Integral Equations 

Let S denote the surface of a conducting body excited by an electromagnetic field E'(r,t),H'(r,4), and let J(r,*) 
denote the surface current on S. An integro-differential equation can be derived by using the well known relation 
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between the surface current density and incident and scattered magnetic fields. The resulting MFIE is 

nxff(r,() = J(r,()-ixff(r,t) (la) 

where n denotes the normal to S, and 

H-<-»^*M^'H (ib) 

where R = |r — r'| is the distance between the source and observation points, and S(-) is a Dirac delta. Henceforth, 
dt is used to denote a time derivative and c denotes the speed of light. 

2.2    Marching-on-in-Time formulation 

The MFIE (eqn.(l)) can be solved using the MOT method. The spatial and temporal variation of the current J(r, t) 
on S are represented using the basis functions, jn(r) for n = 1,•■• ,N„ and Tj(t) for j = 0,•■■ ,Nt, respectively. 
The basis functions jn(r) are chosen to be the Rao-Wilton-Glisson (RWG) functions which have been extensively 
used in both frequency and time domain analysis. The reader is referred to Ref. [6] for a complete description. Rao 
and Wilton [2] use triangular functions to represent the temporal variation. However, higher order interpolants 
can also be used to improve stability and accuracy of the MOT scheme. Manara et al. [7] suggest choosing the 
order of the temporal interpolants to match the highest temporal derivative that appears in the equations. Thus, 
the current on S is represented by 

N,   N, 

J(T,t) = '£Y,InJn(T)Tj(t) (2) 
j=0 n=l 

where I„j is the weight associated with the space—time basis function jn(r)Tj(i). 
Using eqn. (2) in eqns. (1), and applying Galerkin testing, an MOT scheme can be constructed for the MFIE 

and is succinctly represented in matrix form as 

i-i 

ZoX} = T?c ~Y,ZiZj-i (3) 

More specifically, 

^,mn={jm(r),{j„(r)r3_,(*)-fixH^3_,(r,t)})|(=t.   , (4a) 

H^r.t) = iv x I  dff [j,(r-)r'-'(t
fl-*

/c)]    . (4b) 

In the above equations, 

am(r),*(r)> = ydSjm(r)-*(r) (5) 

for any function *(r), tj = jAt, and At is the time step size. Also, Tjnc represents the incident field tested by a 
basis function, and Xj is an array of the weights Inj, n = 1, • • • , Ns. 

Equation (3) is the basis of the classical MOT scheme. In the past, this algorithm has been observed to be 
unstable. But recent research has shown that it can be stabilized by adopting implicit schemes [4]. The stability can 
be further improved by using backward differencing in time, and by adopting more accurate numerical integration 
rules and a center of patch testing procedure. The evaluation of the right hand side of eqn. (3) requires 0(iVf) 
CPU resources; hence, the cost associated with the computation of all currents for all time steps scales as 0(N^Nt). 
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2.3    Plane Wave Time Domain algorithms 

It was theoretically shown in Ref. [1] that using a two-level PWTD algorithm in conjunction with the MOT reduces 
the computational complexity of the analysis from 0(NfNt) to 0{NtNt'3logNs). This reduced complexity is a 
consequence of expressing scattered fields as a superposition of plane waves. 

To implement the PWTD algorithm in the framework of the MOT algorithm, the scatterer is divided into 
sub-scatterers which are confined to boxes defined on a rectangular grid. Two boxes are said to be in each other's 
far-field if the distance between their centers is larger than a prescribed distance. All other boxes are said to reside 
in each other's near-field. All near-field interactions are accounted for using the classical MOT scheme while all 
far-field interactions are computed using the PWTD algorithm. It is to be noted that the boxes should be scaled 
such that the number of spatial unknowns per box is of 0(NS   ). 

Consider a source and an observation box which are in each other's far-field. Assume that each box is contained 
in a circumscribing sphere of radius Rs, and denote the center of the source and observation boxes by rs and r0, 
respectively. Let Kc = r„ - rs denote the vector connecting the source and observation box centers. Without loss 
of generality, it is assumed that Rc = z |RC| = zRc. 

If the current J(r,4) in the source box is divided into L consecutive sub-signals each occupying a time slice 
(/ - 1)TS < t < ITS for I = 1, ■ ■ • , L, then the field at any point r in the source box due to these sources can be 
expressed as 

L-l 

<jm(r), -n x H* (r,*)) = £ £(jm(r), -& x HJj(r, t)>    for (/ - 1)T, < jAt < IT, - At (6) 
1=1   j 

It can be shown that (jm(r), -n x H£(r,t)) = 0 for t < ttrans where 

ttrans = (Rc - 2Rs)/c +{l- 1)T, (7) 

and for t > ttrans 

(jm(r),-fixH«,,-(r,t)> = S*r^L "' desin6[S™~ (kt,n)]T*s(t-k--RJc) * [s£'+ (k,i,k)] *T5{t) 
(8a) 

where 

S^ (k, t, v) = f dS'v x jm (T')S (t ± k • (r' - rc)/c) (8b) 

rc is the center of the box which includes the basis jm(r), the superscript T denotes the transpose, and k = 
x sin $ cos 4> + y sin 8 sin <j> + % cos 8. Equation (8) holds provided that 

=± < ^ - 2 (9a) 
Rs     Rs 

^<|£(l-cos9ini)-4 (9b) 
its fts 

Equations (6) - (8) imply that if for a given source and observation sphere pair a cTs/Rs and 8int are chosen such 
that they satisfy eqns. (9), then the scattered field at the observer can be reconstructed as a superposition of plane 
waves. 

The task of computing the current distribution at each time step is divided into computing near-field interactions 
using the usual MOT scheme, and far-field interactions using the PWTD algorithm. In order to do so, Ts is selected 
such that the constraints (eqn. (9)) are satisfied for the closest box pair which are in each other's far-field. The 
algorithm then follows the three step procedure: 

1. Compute the projection of all the sources in a box on to outgoing rays from the box. This involves computing 
S£'+(k,t,k). This is done for all boxes and all ray directions. 

2. Project the"rays from the source box to the rays entering an observation box when t = ttrans- Analogous_to 
FMM, this operation is called translation, and it involves the convolution of <5(t-k-ftc/c) with Sj,+(k,t,k). 

3. Finally, the rays entering all the spheres are projected on to the observers. 
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3 Results 
PWTD augmented MOT schemes have been implemented for the MFIE. Here, we compare numerical results 
obtained using these PWTD based fast solvers to those obtained using classical MOT schemes. In all comparisons 
presented herein, plane wave Gaussian pulses traveling along -z with an electric field polarized along +x excite 
the scatterer. Figure 1 shows the cross-section of an arbitrary scatterer placed on a cartesian grid. Denoting 
the length of the largest side by a, it can be prescribed that if the distance between the centers of two boxes 
d < la then they he in each other's near-field. From fig. 1, it can be seen that the box pairs (1,2), (1,3), (2,4) 
are in each other's near-field while (2,3), (1,4) and (3,4) are in each other's far-field. In all other examples that 
follow, a similar subdivision of the scatterer is used. In fig. 2, the current at a specific location is compared. 
The cylindrical structure was modeled using 918 spatial unknowns. Figs. 3(a) and 3(b) compare the current on a 
specific location on an almond and far scattered fields obtained using both approaches. The almond was modeled 
in terms of 2610 spatial unknowns. Finally, Figs. 4(a) and 4(b) compare similar data for a larger almond modeled 
in terms of 4680 spatial unknowns. The numerical results obtained using the PWTD based solver are in perfect 
agreement with those from the classical MOT solver. It should be noted that no instability is observed. In all 
our numerical experiments, we have observed break-even points of Ns = 2000; for larger problems, the PWTD 
accelerated schemes outperform the classical MOT algorithms. 

4 Summary 
This paper presented an algorithm that permits the fast analysis of transient elecromagnetic scattering phenomena. 

The computational complexity of this algorithm scales as 0{NtNs/3logNs) as opposed to 0(NtN%) complexity 
of the conventional MOT algorithm. The PWTD algorithm has been derived and implemented in the framework 
of the conventional MOT for the MFIE. It is seen that the agreement between the solution obtained using clas- 
sical and PWTD accelerated MOT schemes is excellent. Multilevel schemes with a computational complexity of 
0{NtNs\ogNs) are currently being implemented. 
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Figure 1: A cross-section of the scatterer placed on 
a cartesian grid. Box pairs (1,2), (1,3), (2,4) are in 
each other's near-field while (3,4), (2,3) and (1,4) are 
in each other's far-field. 

Figure 2: Scattering from an almond computed us- 
ing the MFIE. The scatterer is discretized using 
918 unknowns. The dimensions of the cylinder are 
1 x 1 x 10 m3, and the incident pulse has significant 
spectral content up to / = 200Mhz. 
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Figure 3: Scattering from an almond computed using the MFIE. The scatterer is discretized using 2610 unknowns. 
The largest linear dimension of the almond is 3m, and the incident pulse has significant spectral content up to 
/ = 503Mhz. (a) Current at a location on the almond; (b) The backscattered far-field Ex 
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Background 
In 1981, the Federal Communications Commission (FCC) established limits on the strength of 
electromagnetic radiation allowable from computing devices sold in the United States. In the past 
few years, various other countries have developed similar standards, mostly to control these devices' 
potential to interfere with data communications systems, broadcast radio and television, and 
emergency systems. The European Community has recently standardized these requirements in 
Europe, and expanded them to include not only computing devices, but nearly every product 
containing digital electronics. 

The result of these various regulations is that all manufacturers, not only computer manufacturers, 
must pay close attention to the electromagnetic interference (EMI) levels that their products produce. 
Pressures to shorten design cycle times, reduce product costs, and meet EMI regulations has served 
to increase the interest in using modeling and simulation to help ensure optimum hardware designs. 
An optimum design will ensure only required EMI features are included, since it is no longer 
acceptable in industry to simply use excessive shielding, costly filters, small aperture air vents, and 
other such fixes to meet EMI regulations. 

Typically, electromagnetic radiation testing is performed as a system, that is, all the various parts that 
are generally used together must be tested together. In the case of a most personal computers, this 
would include the computer system box, monitor, keyboard, mouse, and printer. Also, any other 
cables that might be connected to the units must be included, for example, modem cables, speaker 
cables, etc. 

The work presented here focuses on modeling the entire problem, that is, the radiation from a source 
within a shielded enclosure, the coupling ofthat energy to the outside via apertures in the enclosure, 
the effect of wires connected nearby those apertures, and the test environment itself. Because of the 
complex nature of the problem, it is impractical to accurately model this problem without using 
multiple modeling stages and different modeling approaches. The method to be presented here 
makes possible the modeling of configurations that were previously considered impractical. This 
method also makes possible direct comparisons of the simulation results to the regulatory limits to 
predict pass/fail of the device. 

Practical EMI/EMC Problem and Test Environment 
Although there is a large number of different types of products that must meet EMI/EMC regulations, 
most fall into the general class of products with shielded enclosures containing apertures and having 
long wires attached to the enclosure. Plastic enclosures are often shielded either by a metal internal 
coating or by metal fragments imbedded in the plastic during the molding process. Computer 
products, consumer electronics products, and communications devices all fit this category. 

The sourceof the radiated emissions is usually a high-speed (fast rise time) clock or data signal on 
the printed circuit board within the shielded enclosure. The source creates a complex electric and 
magnetic field structure within the enclosure. Some of this energy 'leaks' out through the apertures 
(e.g. air vents, slots between option cards, shielded enclosure seams) and creates RF currents on the 
outside of the shielded enclosure. These currents are then distributed over the entire outside structure 
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(including wires, cables, etc.), and radiate into the outside environment. The fields are then 
measured 10 meters away in the presence of a ground reference plane, as described earlier. 

The products under test typically have long wires attached to different connectors (power cords, 
modem lines, printer cables, etc.) which will greatly affect the radiated emissions from the product. 
RF currents that have leaked out from an aperture and are on the outside of the metal shield will 
couple onto the wires and cables. The wires will greatly increase the effective aperture of the 
'antenna' (the equipment under test or EUT) since the overall size of the EUT with wires is typically 
increased by more than an order of magnitude by the presence of the wires. 

Using contemporary computational technology and techniques, there is no practical way to model the 
entire problem described above with a single model. Earlier work successfully modeled certain 
aspects of the overall problem, (e.g. radiation from printed circuit boards (PCB) with a microstrip 
near a reference plane edge [1][2], PCB via's [2], decoupling capacitor placement [3], or shielding 
through apertures [4][5][6][7][8]). However, these earlier efforts have addressed only specific facets 
of the overall problem, and, therefore, were not adequate to predict compliance with regulatory 
standards. For example, in [1] and [2], emissions from an unshielded printed circuit board (PCB) 
with a microstrip line was modeled. No attempt to include a shielded enclosure with apertures was 
made. In [4]-[8] emissions through apertures in a infinite metal sheet were modeled, but no attempt 
was made in these previous studies to include a PCB as the source, nor to include the required 
measurement environment. These studies were useful to help understand specific phenomena, but 
did not include all the parts of the overall problem to allow for a comparison to the regulatory limits. 

The strengths of the two modeling approaches implemented in the hybrid technique allow a source, a 
shielded enclosure with apertures, and the required measurement environment. Thus the results of 
the overall problem can now be compared to the regulatory limits for pass/fail analysis. Other 
internal features, such as partial shielding walls, extra cables, etc. can be included as required. This 
hybrid technique uses the Finite-Difference Time-Domain (FDTD) method to model the source and 
the inside of the shielded enclosure, including the effects of the apertures. The Method of Moments 
(MoM) approach is used to model the outside of the shielded enclosure, including attached wires, 
and the test environment. 

The Stage-One FDTD Aperture Model 
The electric field strength of a particular location within the aperture is frequency and position 
dependant. The FDTD technique was used to model the aperture in the infinite metal plate by 
extending the metal plate to ABC. A diagram of the FDTD computational space used for single- 
aperture modeling is shown in Figure 1. The electric field within the aperture was found to vary 
across the aperture with the maximum value at the center of the aperture for frequencies below the 
first resonant frequency of the aperture. 

The Stage-Two MoM Aperture Model 
Creating an infinite metal plane with an aperture using the MoM technique is not as practical as in 
the FDTD technique. In order to simulate an infinite metal plane, a single, electrically large, wire 
mesh plate is created. Wire mesh can be used successfully to simulate a solid plane [11][12], 
especially when another wire is to be connected to the structure, as is discussed below. The wire 
mesh should be small compared to the wavelength of interest in order to insure the currents flow over 
the sheet as if it was a solid sheet of metal. 
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Infinite Metal Shield 

Absorbing Boundary 

Figure 1   FDTD Model for Single Aperture 

A 10 mm x 2 mm aperture is modeled as a hole in the wire mesh of a large plate using the MoM 
technique. Since it is desired for the model to be accurate to about 15 GHz (the first resonant 
frequency of this size aperture), the segment sizes are selected to be no larger than about 2 mm for 
the MoM model. Figure 2 shows this wire mesh model. The radial wires at the corners and sides are 
used to increase the effective size of the plate to simulate an infinite plate. 

The original FDTD 10 mm x 2 mm aperture problem is repeated with a larger computational domain 
in the outside area. The electric field level at a distance of 65 mm away from the aperture is found 
using FDTD. This distance is selected to create a reasonably sized FDTD computational domain 
while allowing the fields to be found in the far field at frequencies above about 770 MHz (one-sixth 
lambda from the aperture to the observation point). 

Figure 2   MoM Wire Frame Model with Single 10x2 mm Aperture 
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The electric field level is found in the aperture in the Stage One Model and then is corrected at low 
frequencies using the Herzian dipole impedance method. [13] The corrected electric field is then 
used as the voltage source across the aperture in the MoM (Stage Two) model. A single electric field 
source is placed across the center of the aperture and set to the maximum value (center location) of 
the Stage One model results. The radiated electric field results are compared in Figure 3, and show 
a good agreement between modeling techniques between about 4 - 15 GHz, thus validating the use of 
MoM as a second stage in the hybrid approach to modeling apertures. 

The lower frequencies (typically below 4 GHz) in the FDTD model results may be affected by the 
absorbing boundary condition. Since it is not always practical to increase the FDTD computational 
domain to a point where there are no ABC effects, the results in the FDTD case may be limited in 
that the low frequency information may be in error. However, since the hybrid FDTD/MoM model 
results at those same low frequencies use the corrected aperture fields, the hybrid FDTD/MoM 
results show the correct low frequency electric field values. 

Electric Field at 65 mm from Single Aperture 
10x2 mm Aperture (Ex) 

= 

01    _ A 

■Ä  210 /■ 
"i 

a 

■ 

150- 

-FDTD 

MoM 

1.0E+10 
Frequency (Hz) 

Figure 3 Comparison Between MoM and FDTD at 65mm from Single Aperture 

Comparisons between FDTD-only and Hybrid FDTD/MoM models for apertures in a metal plane 
show very good agreement over the range of frequencies where the FDTD-only model is valid 
(above the frequencies where the ABC introduces errors). The hybrid approach demonstrates its 
strength by improving upon the FDTD-only approach at low frequencies. 

Hybrid models showing the effects of real-world test environment configurations demonstrate the 
importance of including these features in the model, and show how effectively the hybrid approach 
can include them. 

Example of the Hybrid Modeling Technique 
The first step (Stage One) to use this hybrid modeling technique is to create the FDTD model of the 
enclosure, aperture(s), the internal source and whatever internal structure is considered important. In 
the case of an empty shielded enclosure (100 mm cube) with a 10 x 2 mm aperture, the FDTD cells 
must be small enough to describe the aperture correctly.  For this example, a FDTD cell size of .5 
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mm is selected. This size is also small enough to provide at least 10 cells per wavelength up to the 
highest frequency of interest, as per FDTD approach requirements. 

The source is selected to be a simple current on a wire and placed near the aperture. As described 
earlier, this is representative of a PCB ground reference plane edge. The wire is oriented 
perpendicular to the aperture to ensure maximum possible emissions coupled through the aperture. 

Figure 4 shows a diagram of the FDTD model. The aperture is placed on the top face of the 
enclosure for convenience, but could be on any side desired. The top part of the enclosure is 
extended beyond the enclosure walls to restrict any external resonances from affecting the fields in 
the aperture. The internal structure of the enclosure is maintained to allow any internal resonances to 
occur. Both the electric and magnetic field at the center of the aperture is saved as the output from 
this Stage One model. 

The time domain electric and magnetic field results are then converted to the frequency domain using 
a Fast Fourier Transform (FFT). The frequency domain impedance (E/H) is examined to determine 
if errors occurred due to the ABC's close proximity to the aperture at low frequencies which are of 
interest. The electric field is then corrected using the Herzian dipole technique. 

The same enclosure and aperture is modeled in MoM for Stage Two using a wire mesh frame with 
the openings in the wire mesh small compared to the shortest wavelength of interest. The corrected 
electric field is then applied across the center of the aperture in the MoM model for each frequency 
desired. 

Figure 4 FDTD Example Model of Shielded Enclosure and Aperture 

Hybrid Model Comparison Between Free Space and Real-World Test Environment 
As stated earlier, it is important to model the test environment correctly. The following examples 
demonstrate the effects of the environment on the final results. As mentioned earlier, EMI emissions 
measurements are required to be made over a ground plane. The receive antenna must be 10 meters 
away, and it must be scanned (for maximum receive level) over a one to four meter height while 
rotating 360 degrees. The scanning of the antenna height ensures there is no chance of a destructive 
interference path artificially lowering the measured emissions levels. The rotation of the ETJT 
through the 360 degrees ensures the maximum emissions are received, regardless of any possible 
directionality of the EUT's radiation pattern. 

Figures 5 and 6 show the model results for the shielded enclosure EUT with and without the ground 
plane present for both the horizontal and vertical polarizations. The presence of the ground plane, 
and the effect of scanning over the height range, can greatly increase the measured emissions level 
due to the reflected wave adding in phase to the direct wave. 
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Comparison Between Maximum Received Electric field 
for Both Free Space and Ground plane Cases - Horz Polarization 
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Figure 5 Maximized Electric Field Comparison with and without Ground Plane (Horizontal 
Polarization) 

Comparison Between Maximum Received Electric Field 
for Both Free Space and Ground Plane Cases - Vert Polarization 
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Figure 6 Maximized Electric Field Comparison with and without Ground Plane (Vertical 
Polarization) 
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EMI Emissions test standards also require that all cables be attached to the EUT. This effectively increases 
the EUT's electrical size, and typically increases the emissions levels significantly at some frequencies. A 
single cable, one meter long, is now attached to the initial enclosure model, as shown in Figure 7. This 
cable is attached directly to the enclosure shield, as in the case of a cable shield being 'grounded' to the 
case. 

One Meter Long 
Cable/Wire 
(full length not shown) 

Figure 7     MoM Model of Shielded Enclosure with 1 meter Cable Attached 

The same electric field is applied across the aperture for this new configuration. The maximum received 
emissions are greatly increased, as seen in Figure 8, due to the addition of the cable. This demonstrates the 
importance of the hybrid model including all of the test environment features. 

Summary 
A hybrid approach to modeling a complex real-world configuration has been shown to provide accurate 
results. The inside of a shielded enclosure is modeled using the FDTD approach. The electric fields in the 
aperture are found during the FDTD simulation and then used as the source for the second stage MoM 
model. In cases where close proximity to the ABCs during the FDTD simulation resulted in electric field 
errors at low frequencies, a method to correct those errors using Herzian dipole impedances is provided. 
Results are then shown for a variety of real-world test configurations showing the importance of including 
all the configuration details in the model. 
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Proposed Standard EMI Modeling Problems for Evaluating Tools 
which Predict Shielding Effectiveness of Metal Enclosures 

Bruce Archambeault 
IBM 

Omar Ramahi 
Digital Equipment Corporation 

Introduction 
Numerical modeling tools are becoming very popular for a variety of EMI/EMC applications. 
Metal shields around printed circuit boards remain one of the primary techniques used to control 
emissions and provide immunity. Predicting the shielding effectiveness of these metal shields is 
complex, but certain full wave modeling techniques can be used to predict the shielding 
performance, for both near-field and far-field emissions. 

Not all numerical modeling techniques are equal. Every technique has strengths, that is, certain 
types of applications where it excels, as well as weakness where it can not efficiently perform the 
modeling necessary. The Method of Moments (MoM) and the Finite-Different Time-Domain 
(FDTD) technique are the two most commonly used modeling techniques for EMC shielding 
applications. This paper presents the results of modeling the same shielding configurations with 
a number of different modeling tools, using both MoM and FDTD, and demonstrates the 
limitations of these techniques against this application. 

Since shielding effectiveness is very dependent upon the actual test/model configuration, a set of 
standard shielded enclosures is proposed and then each is evaluated using each of the modeling 
techniques. Two different size enclosures are included, and each with two different size 
apertures. The enclosures were also modeled without apertures to show the dynamic range 
limitation of both modeling techniques. 

Shielding Effectiveness 
The term 'shielding effectiveness' is somewhat misleading. Most EMC engineers understand 
that a shielding effectiveness test consists of a comparison between the radiated emissions with 
an enclosure and without the enclosure. A simple antenna is typically used as the source 
antenna, with a receive antenna at some distance away. Once the source antenna is placed within 
an enclosure, the source antenna's characteristics are changed, and so the comparison is not 
really consistent. However, this test is commonly used, and the results are consistent, as long as 
the test configuration is maintained. If the test configuration is changed in any way, then the 
comparisons between tests are not valid, hence the importance of a standard set of shielding 
effectiveness configurations. 

Proposed Standard Shielding Effectiveness Modeling Configurations 
Two different sized rectangular enclosures were developed for use as the standard shielding 
effectiveness model applications. Figure 1 shows a diagram of the basic model, and Table 1 lists 
the various dimensions for each of the different models. 

888 



Figure 1 Standard Shielding Box Diagram 

Aperture 

Enclosure 
Large Box (1) 
Large Box (2) 
Small Box (1) 
Small Box (2) 

Table 1  Standard Enclosure Sizes 
X-size (cm) 

40 
40 
25 
25 

Y-size (cm) 
50 
50 
30 
30 

Z-size (cm) 
30 
30 
15 
15 

Aperture size (cm) 
25x1 
10 x 1 
25x1 
10x1 

In all cases, the shielded enclosure was a rectangular metal box with an aperture centered in the 
'front' face (z-y plane) of the enclosure. The source was a 4.5 cm dipole placed 5 cm inside the 
aperture, and centered. The polarization of the source was selected to be perpendicular to the 
long dimension of the aperture. The 4.5 cm source dipole consisted of two 2.0 cm long wires, 
separated by 0.5 cm gap. 

The MoM Model 
The MoM model was constructed using surface patches. The surface patches were constrained 
to be no larger than l/10th lambda at the highest frequency (in this case, 1 GHz). The source 
dipole was driven using a delta-gap voltage source. 

The FDTD Model 
The FDTD model was constructed using cubical cells with 1/2 cm side dimension. The dipole 
was driven using a constant electric field source positioned between the dipole halves. The 
temporal waveform employed was a differentiated Gaussian function with a width sufficient to 
give a frequency range up to 10 GHz. 

Model Results 
The results from the various model configurations were normalized to the case of the source 
antenna without any shielded enclosure. Far field results were taken 10 meters from the 
enclosure and directly in front of the aperture. Near field results were taken 1 cm in front of the 
aperture. -In the case of the MoM models, a no-aperture case (that is, completely closed shielded 
enclosure) was modeled to show the dynamic range limitation when using this technique. There 
is no corresponding dynamic range limitation with the FDTD technique, so no closed box case 
was modeled in FDTD. 
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Figures 2 and 3 show the shielding effectiveness for the large box with the large aperture for the 
far field and the near field cases, respectively. The results from the FDTD model and the MoM 
model agree well within typical EMC tolerances. Work has been done in the past to show closer 
agreement between FDTD and MoM but would require careful manipulation of the source in the 
two modeling techniques. This was considered unnecessary for this application, since FDTD and 
MoM agreement was not the primary purpose of this work. 

Figures 2 and 3 also show the maximum amount of shielding possible from the MoM model. 
This serves as the dynamic range limitation of the MoM model (for shielding effectiveness use) 
for this configuration. Note that the resonance frequencies excited by this source are clearly 
shown in this dynamic range curve, and that in the areas of resonance, there is little or no 
dynamic range available in the MoM model. 

Figure 2 
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Figures 4 and 5 show the shielding effectiveness for the large box with the small aperture for the 
far field and near field cases, respectively. Again, the normalized results agree between the 
FDTD and MoM models. The amount of shielding provided with the small aperture was greater 
than with the large aperture. 

Figures 6 and 7 show the shielding effectiveness for the small box configuration with the large 
aperture in the far field and near field, respectively. As in the large box case, the resonant 
frequency due to box dimensions is clear. In this size box the additional resonance due to the 
aperture length is also clearly visible. In the large box example, the aperture resonance was 
overshadowed by the box resonance. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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As an additional test, the source position was moved from 5 cm away from the aperture to 15 cm 
away from the aperture. Figure 6 shows the difference in apparent shielding effectiveness due to 
the source position, which indicates the need to maintain consistency between shielding 
effectiveness testing and modeling. 

Figure 8 shows a comparison of the MoM shielding effectiveness for the small box with the large 
aperture for two different patch densities. The MoM patches were reduced to the point where 
there was at least 19 patches per wavelength at 1 GHz. The shielding effectiveness remained 
unchanged but the maximum dynamic range increased with the finer patch resolution. 

Model Parameters 
As can be seen from the previous figures, the MoM models determined the shielding results at 50 
discrete frequencies between 100 MHz and 1 GHz. The large box model required 4300 patches 
while the small box model required 1900 patches. The large and small box models required 
about 500M bytes and 100M bytes (respectively) of RAM and approximately two hours to 
complete the large box problem and about 30 minutes to complete the small box problem on a 
typical UNIX workstation. 

The FDTD models for the large box and the small box contained 1.1 Meg and .32 Meg cells, 
respectively. For resonant structures such as the boxes under study in this work, it was found 
that for the frequency range of interest (100 to 10,000 MHz), a modest-accuracy absorbing 
boundary condition such as Liao's 2nd order operator is sufficient to yield good accuracy. The 
large and small box models required about 42 Mbytes or 12.8 Mbytes of RAM (respectively) and 
a slightly longer time to run the models (3 hours and 1 hour) but provided results up to 10 GHz 
(not shown) as well as a wide dynamic range. 
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Figure 8 
Comparison of Patch Size per Wavelength 
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Conclusions 
Both the MoM and the FDTD techniques can provide accurate shielding effectiveness model 
results as long as the results are within the dynamic range of the basic model. The MoM 
technique's dynamic range was limited to 40 - 50 dB unless extremely fine segmentation was 
used, while the FDTD technique's dynamic range is effectively unlimited. The dynamic range of 
the MoM models varied depending on the size of the basic enclosure as well, indicating that care 
must be taken to determine shielding results are truly due to the test configuration and not an 
artifact of the MoM technique. 

When a limited number of frequencies are required for the analysis, then MoM allowed faster 
results. However, when a wide frequency range was required, or the resolution between 
frequencies must be fine to ensure all resonances are found, then FDTD was a much faster 
solution. The FDTD models required less RAM to run than MoM, making it a more attractive 
option for many applications. 

Overall, either modeling technique can be used for shielding effectiveness applications as long as 
care is taken to understand the limitations of the modeling technique being used. 
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A study in the Proper Design of Grounding for SMPS Converters and the role of CEM. 

Reinaldo Perez 
Jet Propulsion Laboratory 

California Institute of Technology 

Abstract 

Converters that are used in Switching Mode Power Supply (SMPS) are usually well designed internally so 
as to maximize efficiency and minimize output noise. However, deficiencies in the distribution of power 
and grounding within the PCB where the SMPS converters will be located can negate many of the 
advantages provided by these converters. It is shown that inductive and capacitive effects in the way 
SMPS converters are used in a PCB are one of the major causes of high conductive emission in PCBs. 
Furthermore, it is shown that changes in grounding layouts can affect these inductive and capacitive 
effects. Finally, it is show how CEM tools can be used in the modeling of these parasitic effects. The 
emphasis on this paper is on design principles. 

1.0 Introduction 

The switching mode power supply [1] is a class of power supply that makes use of electronic switching to 
process electrical power. Because ideal switches do not dissipate power, the SMPS can be designed to 
have a high efficiency. In the SMPS a high frequency of switching is used and the size of the transformer 
and filtering circuits can be minimized. Because of the great advantages, the SMPS has become the power 
processing unit of choice in low power circuits or in circuits where interference must be kept to a 
minimum. 

The heart of a SMPS is a dc-to-dc converter. The converter accepts a dc input and produces a controlled 
dc output. The three basic types are the buck converter, the boost converter, and the buck boost converter. 
For each of these converters there is an electronic switch that is driven on/off a high frequency (5-500 
KHz). It is the duty cycle of the electronic switch which controls the dc output voltage Voul. There is an 
output filtering capacitor C„„, which is used to smooth out the ripple components of the output voltage 
resulting from the high frequency switching. By adding a feedback circuit in a converter, the output 
voltage of the converter can be regulated. In each converter circuit there is a energy-storage inductance L 
which can be chosen large enough so that the current in it is substantially smoothed [2-3]. 

Because SMPS dc-dc converters are very sensitive to input noise there is a need to filter out the noise from 
the inputs of dc-dc converters as much as possible. For that purpose an EMI filter is chosen as shown in 
Figure 1. The figure shows a single EMI filter (FM-461) at the inputs of several dc-dc converters which 
are used to supply different voltage levels for different loads. The filter EMI modules are specially 
designed to reduce the input line reflected ripple current of dc-dc converters. 

Inside the dc-dc converter good design techniques are applied to minimize the output noise form such 
converters. It is well understood by designers that a clean output voltage is essential for the proper 
functioning of ICs and specially analog devices and circuits which are highly susceptible to bus voltages 
noise. Therefore, concerning noise issues in dc-dc converters is as important to control input noise as 
output noise. We first outline some princples of limiting input noise and then concentrate on the main 
subject of the paper concerning limiting output noise from PCBs where converters are found. 
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FM-461 DC CONVERTERS 
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Figure 1.0 EMI Filter serving a cascaded line of dc-dc converters. 
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These filters are intended for use in applications of high frequency switching (100 KHz). These EMI 
filters are capable of reducing the input ripple current by as much as 40 dB within the frequency band of 
100 KHz to up to 100 MHz. 

2.0 Transients Effects in SMPS. 

In a simplified circuit of a switching mode power supply an error amplifier compares output voltage Vout 

with a reference V„rand controls the duty cycle, D, via a pulse width modulator as shown in Figure 2. The 
output capacitor Cont is represented by its equivalent circuit that includes the equivalent series resistance 
(ESR) and the equivalent series inductance (ESL). When we have a load step AI current through the 
choke inductance L can not be instantly changed. There will always be a finite time t needed for L to 
accommodate AI and is given by the expression: 

t>- 
LAI 

\r in1-'mice/      'ml       "du 

(1.0) 

where D„« is the maximum duty cycle and Vdio<je is the diode's voltage drop. The choke current Ichokc 

slews to the new load current but before it does that I,oad flows through Coul. This results in an output 
voltage deviation AV0„, that may be as much as 

W~ ZESL(dI'°°d)+ESR»AI 
at 

(2.0) 
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Figure 2.0 Simplified diagram of a SMPS with output capacitor model (ESR & ESL) 

where dl^/dt is the load's current slew rate (amps/sec).The SMPS's Coul acts as a reservoir for these 
current transients. The delay that is observed is compounded due to the wiring and possible long traces in 
the PCB. As can be observed in Figure 2 traces have self inductances and resistances and when Ilt>ad 

changes from Faraday's law L -^i^a will cause an initial voltage deviation AV given by 

AV-- ,<***) 
dt 

(3.0) 

Furthermore, R „MW, will cause an input voltage drop as 1,^ slews. The time that is needed to change a 
current through load wires/traces in a PCB is given by the expression 

(4.0) 

where U,i,y is the SMPS delay time and t^ is the time needed for I „*«/„,«, to catch up to the load current 
and given by 

rise delay 

dl,„ 

dt 

dh. 

^wire/lrace    J "'     / 

(5.0) 

where V^ is the maximum output voltage during the transient recovery of the supply. The output load 
will experience a dip of as much as 

AV > ESR\tdl^ 
dt 

+ f 
i(dlhad/dt 

(6.0) 

A computer simulation of a circuit of the type shown in Figure 2.0 using SPICE can show the effects of 
load wire/traces inductances and external capacitance as shown in Figure 3.0. 
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Figure 3.0 Load Transients resulting from modeling output loads of a SMPS 

3.0 Proper Grounding to Suppress Transient Effects 

Since parasitic inductance and resistive effects in the loads of SMPS are greatly responsible for the 
transients effects as shown in Figure 3.0 (the Fourier Transform of Figure 3.0 will show a series of 
discrete frequencies conducted emissions) the efforts to minimize such transients effects will have a great 
impact in reducing the conducted and radiated emissions which are so common in power supply busses. 

Designers of PCB which are to accommodate SMPS converters must control the noise emanating from the 
on-board converter so that it does not interfere with other systems circuitry, or propagate into the main 
power bus. Converters are usually designed to pass CE and FCC radiated and conducted emissions. 
However, this is really not enough since the containment of emission at the PCB level must also be 
exercised. Conducted emissions containment is seldom provided within the latest high power modules. 
One reason is that it gives the designer greater flexibility in meeting design requirements. Second it 
reduces costs and real state requirements. Therefore, good board layout is essential for minimizing the 
amount of noise an on-board converters conducts or radiates. Good board layout is essential for 
maximizing power efficiency from on-board converter to other PCB loads. Ideally, the board should 
provide wide power paths routed closely together in parallel. In addition, all closed loop areas, which can 
behave as antennas should be kept to a minimum. To help shield other circuitry from the radiated noise in 
fast switching power train, board designers should avoid running signal lines under the converter. 
Common mode noise, which is coupled through the capacitance between components such as heat sinks 
and transformer isolation windings, appear between frame ground and the converter's input conductors. 
Differential noise appears across the input conductors. 

Common mode noise showing high frequency content can be routed back to the on-board converter by 
ceramic capacitors placed between input and output conductor and the case ground. Lower frequency 
differential mode noise can be diminished using ceramic capacitors placed close to the converter between 
the input leads. All of these bypass capacitors should be placed as closed as possible to the converter to 
minimize loop areas. Figure 4 shows the proper placement of capacitors in dc-dc converters. 
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Figure 4. Proper placement of capacitors in dc-dc converters. 

Once we had placed bypass capacitance in a smart configuration to reduce common mode noise from the 
dc-dc converters and PCB we take a look at the ground and power layouts from the CAD system to see 
what improvements can be made in the layout that would reduce even more the conducted and radiated 
emissions. In Figure 5.0 we see the layout of power and ground planes corresponding to the dc-dc 
converter and PCB schematics shown for Figure 4.0 
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Figure 5. Ground and power planes layouts for dc-dc converter 

In Figure 6 we observe some experimental data concerning conducted emissions which was obtained for a 
PCB based on the design of Figure 5.0 (other components of the PCB are not shown) 
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Figure 6.0 Conducted emissions for a three dc-dc converter PCB with ground and power layout for dc-dc 
converters as shown in figure 5.0 

There are three basic rules commonly used by designers for containing the noise generated by the power 
module: a) return the noise current to the source using as short as possible a return loop, b) reduce the 
impedance of these loops by reducing inductance and increasing capacitance, and c) identify alternate 
routes and suppress them by adding impedance. 

4.0 Using CEM Tools for Optimizing Power and Ground Layout for dc-dc converters in a PCB 

The flow chart below shows a brief outline of the procedures followed for designing PCB using high level 
hardware description languages such as Verilog and VHDL. Notice that an integral part of this modeling 
process (e.g for designing a PCB with dc-dc converters) is the use of Computational Electromagnetic 
Tools (CEM) to perform a complex parasitic extraction process and obtain parasitic effects such as 
inductances, resistances and capacitances effects in the PCB. This procedure is used for obtaining power 
planes, ground planes and other ICs parasitics. As the flow chart shows final timing simulations are 
performed to estimate power & ground plane performance. The procedure can be repeated several times 
for each change of the power, ground planes and ICs layout until an optimum design is obtained 
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A new and more optimized layout of the one shown in Figure 5 is now shown in Figure 7 after the 
optimization procedure shown above. 
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Figure 7.0 Optimized design of dc-dc converter power and ground planes. 

A better ground and power planes design often translate into a less noisy board. Therefore, some 
conducted emission measurements are made again on this new design in Figure 7.0. The figure shows that 
some improvement in a couple of frequencies are made where the emissions were reduced to the spectrum 
analyzer's noise floor level. Further optimization can be obtain if the same techniques are applied at other 
parts of the PCB beyond the dc-dc converters. 
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Figure 8.0. Conducted emissions for a three dc-dc converter PCB with ground and power layout for dc-dc 
converters as shown in figure 7.0 

5.0 Conclusion 

Transient effects and common mode noise current in SMPS are directly responsible for the conducted 
emissions often seen in the 30 kHz to 100 MHz region. This paper has shown some of the origins of these 
transient effects and modeling associated with such effects. It has also been shown that minimizing 
parasitics in power and ground planes of dc-dc converters will not only diminish possible transients effects 
but will diminish common mode noise as shown in conducted emissions. 
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Expert System Algorithms for EMC Analysis 

T. Hubing, N. Kashyap1, J. Drewniak, T. Van Doren, and R. DuBroff 
University of Missouri-Rolla 

Abstract - Expert system algorithms that analyze printed circuit board designs, anticipate EMC 
problems, and help designers to correct these problems are being developed by the EMI Expert 
System Consortium at the University of Missouri-Rolla. This paper reviews the basic structure of 
the EMI expert system and describes newly developed algorithms. 

Introduction 

In order to achieve the short development cycles that are necessary to be competitive in the 
electronics industry, it is becoming increasingly important to get the design correct before the first 
prototypes are built. This means that printed circuit board designs must be capable of meeting 
radiated EMI and EM susceptibility requirements the very first time they are tested in a lab. 
Experienced EMC engineers with a detailed knowledge of a printed circuit board design can often 
identify potential EMC problems in a design, evaluate the severity of these problems, and help 
designers to correct them before a prototype is built. Unfortunately, most companies cannot afford 
to have an experienced EMC engineer looking over the shoulder of the designers at every phase of 
the design process. 

Expert system EMC software is designed to help provide EMC expertise to circuit designers and the 
people who do printed circuit board layouts. Expert system EMC software reads data from 
automated board layout files, component files and an EMC knowledge database. It then uses this 
information to find and evaluate potential EMC problems. Unlike numerical EM software or design 
rule checkers, expert system software is capable of identifying and quantifying critical EMC 
problems and helping the non-expert user to solve them. 

The following sections describe the ongoing work of the EMI Expert System Consortium at the 
University of Missouri-Rolla. The consortium consists of hardware and software companies who 
are working with the university to develop expert system software for EMC analysis. 

The EMC Expert System 

Figure 1 shows the basic structure of the EMC expert system. The shaded boxes represent those 
algorithms that have been implemented. The expert system consists of four stages - the input stage, 
the evaluation stage, the estimation stage and the output stage. Each stage is made up of several 
modules, with each module performing a certain task. This modular structure makes it easy for a 
person to understand and modify the functional capability of the system. 

1 Navin Kashyap is currently a graduate student at the University of Michigan in Ann Arbor. 
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Figure 1: EMC Expert System Flow 
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The Input Stage 

Information about the printed circuit board under analysis is collected by the input stage of the 
expert system. Physical information about the board, such as board geometry, names and locations 
of all nets and components, trace lengths and thicknesses etc., is obtained from board layout files 
generated by automated layout tools. The electrical properties of each net, such as signal 
frequencies, currents, voltages etc., are deduced by collating information from the layout files and 
the component library. 

The component library is a file that contains information about components that is not present in the 
board layout files. It is a database of information about all components that the system may 
encounter when analyzing PCB's for a particular set of users. The component library contains 
component information at two levels - the package level and the pin level. Package level 
information about a component includes the component name, package size and type, pin pitch etc. 
Pin-level information about a component is provided for each pin of the component and varies 
depending on the type of component and the function of the pin. For example, each output pin of an 
active digital device would have an entry in the component library that specifies the risetime, 
maximum voltage, maximum current, clock frequency, and type of signal (e.g. data, clock, etc.). 

A third source of information for the expert system algorithms is the EMC personality file. This file 
is used to tailor the expert system software to meet the needs of a particular company. The EMC 
personality file contains industry-specific information that controls the way the expert system 
algorithms execute. It also contains information that helps the expert system to recognize circuits 
and structures commonly used by a particular company. 

The data from the layout files and the component library is used by the net classification algorithm 
to determine information about the signal properties, noise margin and function of each net on the 
board. It also searches for possible layout problems, such as nets being referenced to more than one 
power source, or nets being driven by more than one driver, and alerts the user to such problems. 
The algorithm identifies all power and ground nets on the board by checking each net to see if any 
of the pins attached to it are specified to be power or ground in the component library. Nets that are 
neither power nor ground are called signal nets. 

The classification algorithm determines various signal parameters for each signal net. These 
parameters are determined from the component library entry for the driver for the net. The 
algorithm locates a driver by checking to see if any active device output pin is connected to the net 
either directly or through passive devices. The signal parameters determined by the classification 
algorithm consist of the clock frequency associated with each digital net, the range of signal 
frequencies on each analog net, the signal transition time for each digital net, the maximum and 
minimum voltages on each net, the maximum current on each net, the reference voltage for each 
net, and the utilization classification of each net. 

Each signal net is also assigned a noise margin, which is the maximum voltage that may exist on the 
net without interfering with the normal behavior of the components. This assignment is based on 
the noise margins of the active device input pins on the net, as specified in the component library. 
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After the classification algorithm finishes its run, its results are made available to the user, who is 
given a chance to modify the results, or provide information that may fill in any gaps in the 
available information. At no point does the expert system ever require the user to provide 
information about the circuits or board design. If the user is satisfied with the results of the net 
classification, these results are passed to the evaluation stage of the EMC expert system. 

The Evaluation Stage 

The evaluation stage of the expert system contains the modules that perform a detailed EMC 
analysis of the board. These modules search for potential radiation and susceptibility problems with 
the board, and also test the board for compliance with basic EMC design guidelines 

The expert system creates a list of all the clock frequencies on the board, and their harmonics, and 
all narrow-band analog signal frequencies. The narrow-band radiation from the board is calculated 
at these frequencies only. The frequency spectrum is also divided into blocks at which the 
broadband radiation is calculated. These blocks are created in such a way that each block is 
centered at a narrow-band frequency, and fills the space between narrow-band frequencies. 

The power bus noise algorithm estimates the voltage induced on the power bus of printed circuit 
boards that utilize power and ground planes. This estimate is based on information about the 
currents drawn from the power bus by the active devices and the effective decoupling at each 
frequency of interest. A time-domain analysis is used to predict the peak voltage induced on the 
power bus and a frequency-domain approach is used to determine the noise on the power bus as a 
function of frequency. Power bus noise information is utilized by other algorithms and therefore 
the power bus noise algorithm must be run before the remaining algorithms in the evaluation stage. 

The basic approach used by the expert system to locate and quantify radiated EMI problems is to 
locate all possible sources of high-frequency energy and all structures likely to radiate that energy. 
Different algorithms are used in the evaluation stage to locate different kinds of EMI sources. 

The DM radiation source algorithm searches for signal nets that carry high-frequency currents and 
are long enough or large enough to serve as their own antenna. DM refers to differential-mode 
radiation sources. Differential-mode sources are rare on well-designed boards, but they are 
relatively easy to locate and quantify. 

I/O coupled sources are fairly common, particularly on dense boards with many signal layers. An 
I/O-coupled source results when signal energy from one net couples to another net that carries this 
energy off the board. The expert system algorithms look for both magnetic and electric field 
coupling between nets with high-frequency signals and nets that attach to connector pins. 

The most common radiated EMI problems below about 500 MHz are due to current-driven sources. 
Current driven sources result when signal return currents create a small potential difference between 
two points in the ground structure. This potential difference can create currents in cables or 
enclosures attached to ground that result in radiation. The expert system estimates the two- 
dimensional voltage variation across the return plane structure, due to currents returning on the 
power and ground planes. It then locates the antennas that may be driven by this voltage variation. 
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The expert system is capable of identifying antenna configurations such as a cable being driven 
relative to another cable or a heatsink, a cable or heatsink being driven relative to the board etc. For 
each such antenna, it determines the voltage difference between the two halves of the antenna, and 
then calculates the E-field radiated from the antenna at each narrow-band and broad-band 
frequency. 

Algorithms are also included that identify crosstalk problems and check the design for violations of 
basic EMC design guidelines. 

The Estimation and Output Stages 

The results from all the modules in the evaluation stage are passed to the estimation stage, which 
combines these results to form an overall estimate of the radiated EMI from the board. The radiated 
EMI modules in the evaluation stage calculate the magnitudes of the electric fields due to each of 
the radiated EMI mechanisms, at each frequency and frequency block. 

The output stage presents the expert system's evaluation of the board to the user. It displays a graph 
of the estimated radiated EMI as a function of frequency, and identifies the circuits and structures 
on the board that are mainly responsible for the board's radiated EMI problems. It also suggests 
design changes that will alleviate the problems reported. 

The radiated EMI plot displayed by the expert system is similar to that which would be obtained 
from an actual EMI test. It plots the board's radiated field in dB(uV/m) as a function of frequency. 
An FCC or CISPR limit line is placed on the plot, so as to give the user an immediate idea of the 
frequencies at which the board radiation exceeds the limit, and the amount (in dB) of excess 
radiation at those frequencies. 

Significant contributions of individual nets to the radiated E-field are recorded at each frequency by 
the modules of the evaluation stage. These are used to construct a list of nets causing the worst 
problems at any particular frequency. So, if the user would like to know which nets are causing the 
radiation to exceed the limit at any frequency, the expert system can list all such nets and display a 
diagram of the board layout that highlights these nets. Information about the mechanisms that cause 
these violations is also available to the user. 

The expert system also offers suggestions that will help in reducing radiated EMI levels. As the 
chief contributors to the emissions are known to the system, it uses simple rules to come up with 
viable suggestions that will reduce the contributions from the worst offenders. 

New Algorithms 

The next prototype software will contain improvements to the existing algorithms based on 
evaluation of these algorithms against actual hardware. Improvements to the current-driven 
algorithm will reduce the probability that this algorithm will be fooled by an unusual component 
placement. Also voltages induced in the power and ground planes by the components themselves 
will be estimated in addition to the voltages induced by the currents through the traces. 
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Experiments using real computer hardware in the laboratory have shown that radiation at 
frequencies near 1 GHz is dominated by different source mechanisms than radiation below 500 
MHz. At the higher frequencies, enclosure resonances play a critical role in the way that products 
radiate. A new algorithm has been developed to predict and analyze radiated emissions at 
frequencies above 500 MHz in products with metal enclosures. 

The next prototype software will also use a different method to sum the contributions from the 
various EMI sources that are identified. The original version used a root-mean-square sum of the 
field strengths resulting from each individual source-antenna combination. However, the 
algorithms assume that the cables are oriented in the position that "tends to maximize" radiated 
emissions (per the FCC and CISPR test procedures). Since it is not usually possible to find a cable 
position that maximizes the contributions from all sources at the same time, this root-mean-square 
summing technique has been shown to be too harsh. The new algorithms will sum all of the sources 
to determine their relative contribution, but the level reported to the user will be the predicted 
emissions from the worst-case source-antenna pair at each frequency. 

Summary 

The EMC expert system described in this paper models the thinking process of a human EMC 
expert. It reads board layout information and information about the components on the board. It 
uses information stored in its knowledge base (i.e. the component library and the personality file) to 
deduce properties of the signals on each board trace. This information is used to identify and 
evaluate possible radiation sources and antennas, and provide an overall estimate of board radiation 
and board susceptibility. 

The EMC expert system is not designed to replace human EMC experts. However, it provides a 
means of automating many of the tasks that human EMC experts normally perform. Also, it is 
capable of analyzing a design before a prototype has been built. And since the expert system does 
not require the user to be an expert, this analysis can be done at any point in the design process by 
circuit designers, board layout personnel, or anyone with access to the board layout files. 

Finally, the EMC expert system is not a replacement for numerical electromagnetic modeling 
software. It does not do a thorough analysis of EMI sources with well-defined parameters. 
However, it excels at the one thing that numerical electromagnetic modeling software does not do 
well: locating and prioritizing potential EMC problems. Ideally, future printed circuit board 
designers will have a suite of tools at their disposal. They will use expert system tools to identify 
EMC sources, antennas and coupling paths; and numerical electromagnetic modeling tools to 
analyze these structures and evaluate alternatives. 
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Abstract 

Detailed characterization of radio propagation channel is a major requirement for successful design of 
mobile communication systems. In- this paper, mobile radio channel characterization process based on the 
FDTD method is presented. The merits and demerits of the currently used methods, namely impulse-response 
method and ray-tracing methods are briefly considered, and the total field formulation of the FDTD method is 
discussed. The simulation model consists of a main street with six concrete buildings. The wave propagation 
patterns in the whole channel and the received signals at some line of sight and out of sight locations are 
presented. 

Keywords : FDTD method, propagation characteristics, wave scattering, mobile radio waves, urban area 

1 Introduction 

A typical mobile radio environment consists of two 
parts; propagation loss and multipath fading, as shown 
in Fig. 1. This research seeks to model the multipath 
fading due to scattering by buildings and other out- 
door structures. Multipath fading, which results from 
reflection, refraction and scattering of radio waves by 
buildings and other structures, gives rise to more than 
one path reaching the receiver and produces a dis- 
torted version of the transmitted signal. The mul- 
tipath fading in mobile and indoor communication 
systems cannot be eliminated, therefore multipath 
channel must be well characterized in order to reduce 
its effect in the design of such systems [1]. Most re- 
ported mobile channel modeling process, as in [2, 3], 
are based on measurements which are expensive and 
time consuming. Until recently, the time-varying in- 
door and mobile radio propagation channels are usu- 
ally modeled as: the channel, for each point in the 
3-dimensional space, is a linear filter [4] having the 

impulse response: 

JV(T)-1 

h{t,T)=    J2   ^)9[r-Tk(t)]^s^ (1) 

where t, T are the observation time and time of im- 
pulse application respectively, N(t) is the number of 
multipath components, g(t ) is a basic pulse shape, 
and {ofc(i)}, {rfc(i)}, {8k(t)) are the random time- 
varying amplitude, arrival-time and phase sequences 
respectively. This model is illustrated in Fig. 1(b). 
A time-invariant form, suggested by Turin [5] for the 
multipath channel, has been applied successfully to 
some mobile radio applications (6, 7). In this case (1) 
reduces to: 

M*)=][>tS[r-Tfc]e^ (2) 

The output of the channel, y(t), to a transmitted 
signal, s(t), is given by the equation 

/oo 

s(r)h{t -r)dr + n(t) 
■OO 

(3) 
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where n(t) is Gaussian noise. The following are 

some limitations of the impulse response method: the 

detailed structure of the scatterer is not modeled, no 

single statistical distribution exists to model all situ- 

ations of arrival time sequences and path amplitude 

distributions, it is not practically intuitive, the char- 

acteristics properties of the buildings and other scat- 

tered are not completely modeled. These limitations 

form the basis of our choice of the FDTD method, 

which has been successfully applied to many electro- 

magnetic problems including [8], for the multipath 

fading channel modeling and simulations. Alterna- 

tively, the modeling based on the 3-dimensional Uni- 

form Theory of Diffraction (UTD), used in [9, 10], is 

also receiving much attention. The UTD method is 

known to be very accurate at high operating frequen- 

cies, and requires less computer resources (memory) 

when compared with the FDTD method. The UTD 

calculation times Tr grow as 

TrOTlRX -n". (4) 

where TIRX is the number of points at which fields is 

to be calculated, n0t, is number of obstacles and nre 

is the number of reflections. 

(b) 

Fig. 1: A Mobile Radio environment (a) 

Propagation loss, (b) Multipath fading. 

However, the following are some of the limitations 

of the UTD method: in a highly reflective environ- 

ment it is very difficult to compute, it is reliable when 

the scatterers are many with complex geometry, it is 

not practical if field strength at many different lo- 

cations are required, to determine the most critical 

receiver location for instance. Other methods used in 

[11,12] are not only difficult to implement, the results 

are not very consistent[12]. 

s(D- >«,r)= Ypt(t)aj-rMvtiJeM 

Fig. 2: Impulse response model of the multipath 

fading. 

2 The FD-TD Algorithm for Radio Propagation 

In the isotropic medium, Maxwell's equations on 

which Yee's FDTD algorithm is based, are given by 

VxE = -(i' 
dt 

ÖE 
VXH = CTE + £^- 

ot 

(5) 

(6) 

where \i, CT, E are the magnetic permeability, elec- 

tric conductivity and permittivity respectively. For 

the simulation, the total field formulation is used. In 

this case the total fields for 2-dimensional TM mode 

of E = Eziz are expressed as 

(7) 

(8) 

=) 0) 

A grid point in Yee's notation is define by the re- 

lation (i,j) = (iAx,jAy) in 2- dimensions and any 

function of space and time is expressed as Fn(i,j) = 

F(iAx,jAy,nAt). By centered finite-difference, a 

space derivative can be expressed as 

dF"(i,j) ^ f"(i + 1/2,3) ~ F"(i - 1/2, j) 
dx Ax 

The time derivative is also expressed as 

dHx ldEz 

at ß dy 
dHy \dEz 

dt ß dx 
dEz If dHy dH, 
dt E\dx dy 

(10) 
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dFn(i,j) _ F"+1/2(i,j)-F"-1/2(i,j) 
(11) St At 

Using these notations the FDTD difference rela- 

tions for the above equations are given by: 

For free space, 

ß?+1(t, j) = Et(i,j) + -£L[fl?«/»(i,j) 

-flri/a(*.j-i)]--jrl/a     (i2) 

On a perfect conductor, E"(i,j) = -E"(i,j). 

In dielectric material (buildings), 

£?+1(ii) = E«(i,j) + *L[HpV'(i,j) 

At 
-ij;«'J(i-i,i)]-^[ri/2(i,j) 

-tf?+1/2(*>J - Dl ■ 
At jn+l/2 (13) 

where Ax, Ay, and At are the increments in x, y 

and time, respectively. 

The magnetic fields are given by the relations 

H^I\i,j) = H»-"\i,j) 

+^!£?(i + 1'j)-£?(U)1 (14) 

+^K7\E^J + l)-E"Ahi)] (15) 

The orientation of the electric and the magnetic 

fields in a cell is as shown in Fig. 3. 

%\ 

"? 
Hx 

-OEZ~ 

3 

7vHy 

Hx 

Fig. 3: The arrangement of the fields in a Yee cell 

For accuracy, cells size <5 = min(Ax, Ay) must be 

smaller than A/lOpvhere A is the smallest wavelength 

in problem space. For stability, the time increment 

At must satisfy the Courant inequality 

cAt< 
VTÄ^p + TÄPP 

(16) 

where c is the velocity of light. For this simulation, 

80% of the time given by the Courant equality is used 

for the time step, At. 

The Mur's Absorption Boundary Condition (ABC) 

is used to limit the simulation region. The first order 

ABC is applied at the corners of the problem space. 

For example, at point x=0: 

^ - EV + CSTT^1^1 - E^1] (17) 

At all other boundary points the second order ABC 

is applied. For example, along the line x=0: 

+c7[ESij + J3?j] + c8[^i+1 - 2ESj 

+*3j-i + *?j+i - as« + JSTj-il     (18) 

where 

C3    = 

cAt - Ax 
cAt + Ax 

2Ax 
cAt + Ax 

(cAtfAx 
2(Ay)2(cAt + Ax) 

(19) 

(20) 

(21) 

Time (nsec) 

Fig. 4(a): The Gaussian line current. 

For the simulation of electromagnetic propagation, 

we assumed that an antenna of point type at Tx in 

street, vertical polarization and generates a Gaussian 

line current of the following form, 

=    ^exP{-a(t-CAt)2} 

(CAT) 
(22) 
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where t is the time elapsed, J^ax is the amplitude, (, 

is the number of time steps in Gaussian pulse from 

the peak value to the truncation value, and a is a 

constant related to C as given above. 

The plot of Gaussian line current and the corre- 

sponding Fourier transform are shown in Fig. 4(a) 

and 4(b), respectively. 

■ TO IS 
Frequency, rad/s 

Fig. 4(b): Fourier Transform of the Gaussian line 

current. 

3 The Simulation Model and Parameters of Radio 

Propagation 

The problem space, as shown in Fig. 3, is 30 X 30 

meters (or 2000 X 2000 in cells units). The model 

consists of six buildings as the scatterers of the wave, 

aligned symmetrically for simplicity and each is of 

dimensions 9X6 meters. The buildings are lineup 

along a main street, 9 m wide. The buildings are 

separated from each other by streets 4.5 meters wide, 

and in all the separation between the buildings and 

the problem space's boundaries are maintained at 1.5 

meters, equivalent of 100 cells. Currently, though not 

very practical, the buildings are considered to be a 

solid of homogenous density. For the building walls, 

the relative permittivity is 3 and the conductivity is 

0.005 mho/m [10]. The summary of the simulation 

parameters is given in Table I. Results are also pre- 

sented for the simple case, where the buildings are 

considered as perfect electric conductors (PEC), for 

clearer propagation patterns and comparison.- We 

used £ = 32, since the concrete buildings have rel- 

ative permittivity of 3. In the simulated region, there 

are three line of sight (LOS) sites of receiver locations 

Li with coordinates as follows; LI (4.5m, 15.0m), L2 

(15.0m, 15.0m), L3 (25.5m, 15.0m), and out of sight 

(OOS) sites of receiver locations Li with coordinates; 

L4 (9.75m, 6.0m), L5 (9.75m, 24.0m), L6 (20.25m, 

6.0m) and L7 (20.25m, 24.0m). The transmitter Tx 

is located at point (1.50m, 15.0m). 

y 
30.0 m 

28.5- 

24.0. 

19.5. 

% 

A1 

Tx 

B1 L7 

t 
A2; 

ßm 
|B2 ■¥■•02 

Building 

'boundary 

"6.0 m 

9.0 m 

45       9.75      15.0     20.25     25.5       300 
Ez1 Mix 

»■* 

Fig. 5: The layout of problem space for simulation 

Table I: Simulation Parameters 

Frequency of source =850 MHz 

Cell Size, 6 =0.015 m 

Time increment, At =28.32 ps 

Relative Permittivity(building) =3.0 

Conductivity of building, a =0.005 S/m 

Current amplitude, J^x =1000.0 A/m2 

Pulse duration =1.81 ns 

4 Numerical Results and Discussions 

The total received signals at the locations LI, L2, 

L3, L4 and L7 for the case where the buildings are 

considered as having a dielectric permittivity of 3 and 

conductivity of 0.005 mho/m are shown in Figs. 6 - 
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10. Similar plots for the case where the buildings 

are considered to be perfect conductors are shown in 

Figs. 11-14. In this latter case, for the location L4, 

the sharp initial power fall at about 60 ns can be at- 

tributed to the shadowing effect, which is expected to 

be more effective in this case where the buildings are 

considered to be perfect conductors. In both cases, 

the received signal at location L4 shows much varia- 

tions with time, since it is an out of sight location. 

For each plot, the E-values are taken starting from 

time t=0, therefore each plot shows an initial fast 

fading effects after which approximately regular pat- 

terns develop. The signal propagation patterns in the 

problem space are shown in Fig. 16-18 for the con- 

crete buildings . The Fig. 16 represents the total 

electric field after 28.3 ns of propagation time corre- 

sponding to 1000 time steps. After the another 1000 

time steps, that is a total time of 56.6 ns, the pattern 

in Fig. 17 is obtained and the after the next 1000 

steps, total time of 84.9 ns, the propagation pattern 

in Fig. 18 is obtained. The propagation patterns 

are as expected from the scattering geometry shown. 

The buildings are observed to reflect back much of 

the transmitted signal, a lost to a receiver within the 

buildings. Similar, plots are shown for case where 

the buildings are considered as perfect electric con- 

ductor. In general, the electric field patterns show 

high peaks near the building corners along the line 

of sight. These are mainly due to diffractions and to 

some extent reflections at the corner points, which in 

these cases increase the received signal intensity. In 

all, the main street acts as a waveguide. 
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Fig. 7: Received electric signal at L2 (LOS). 
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Fig. 8: Received electric signal at L3 (LOS). 
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Fig. 6: Received electric signal at LI (LOS). 
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Fig. 9: Received electric signal at L4 (OOS). 
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Fig. 10: Received electric signal at L7 (OOS). 
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Fig. 13: Received electric signal at L3 (LOS) for 
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Fig. 12: Received electric signal at L2 (LOS) for 

PEC. 
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Fig. 15: Received electric signal at L7 (OOS) for 

PEC. 
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Fig. 1C: Electric field patterns after 28.3 ns. Fig. 19: Electric field patterns after 28.3 ns for PEC. 
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Fig. 17: Electric field patterns after 5G.6 ns. Fig. 20: Electric field patterns after 56.6 ns for PEG. 

Fig. 18: Electric field patterns alter 84.9 ns. Fig. 21: Electric field patterns after 84.9 ns for PEC. 
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5 Conclusions and Future Plans 

With the FDTD method, it is becoming increas- 

ingly possible to simulate the outdoor radio wave 

propagation. The results have much more intuitive 

meaning than the impulse response method that is 

currently being used. The main limitation is the two- 

dimensional approach as a result of the computer 

resources limitations. Therefore ground reflections, 

which are observed in practical situations, cannot be 

accounted for in this simulation. When used together 

with the UTD method, very complex mobile commu- 

nication environments can be completely modeled. 

As a future plan, these results will be further opti- 

mized, and statistical properties of amplitude varia- 

tion, path loss, mean excess delay, rms delay spread 

will also be determined. Finally, the results will be 

compared with similar models using the UTD meth- 

ods in both 2-dimensions and 3-dimensions as used in 

[10, 14], 
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Extension of the MoM/PO Hybrid Technique 
to Homogeneous Dielectric Bodies 

U. Jakobus 
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Pfaffenwaldring 47, D-70550 Stuttgart, Germany 

Abstract 

A current-based technique hybridizing the method of moments (MoM) with physical optics (PO) 
is extended in its range of application from perfectly conducting bodies to scattering problems 
composed of metallic and homogeneous dielectric bodies. To treat electrically large dielectrics, the 
electric and magnetic surface current densities resulting from an application of the equivalence 
principle are approximated by PO, thus avoiding the need of solving a large system of linear 
equations. In an example the exact solution of a short dipole antenna radiating in front of a 
dielectric sphere is compared to the numerical results. MoM results are almost identical to the 
exact values, while PO leads to a drastic reduction of memory and CPU-time with results still 
accurate enough for most applications. 

1    Introduction 

Even though volume discretization techniques such as 
FDTD or FEM have gained much popularity these days 
due to the increased computer power available and the 
general range of applicability, the MoM is able to pro- 
duce results with the same or an even higher degree of ac- 
curacy consuming considerably less memory and CPU- 
time for a certain class of scattering and radiation prob- 
lems involving e.g. perfectly conducting metallic surfaces 
and wires or homogeneous dielectric bodies. 

One common problem of all the techniques mentioned 
above is the strong dependency of memory and CPU- 
time on the frequency / [1], resulting from the need of 
discretizing the geometrical structure into volume or sur- 
face elements small in size as compared to the wavelength 
A.   The application of pure asymptotic high frequency 

Fig. 1: Radiation of a mobile telephone 
close to the human head. 

techniques such as PO or diffraction theory (UTD) is often restricted to specific geometries. 
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Therefore, we will in the following concentrate on a hybrid technique combining the MoM for 
the resonance region and below with PO for electrically large regions. For perfectly conducting 
geometries, this technique has already been presented by the author, e.g. [2, 3]. 

The present paper extends this formulation by addressing the solution of problems where a metallic 
structure radiates in presence of a homogeneous dielectric body. A practical example is depicted 
in Fig. 1, where a mobile telephone is located in front of the human head. If, and this is our 
intention, we focus on optimizing the antenna by comparing different antenna concepts with 
respect to radiation pattern, gain, input impedance versus frequency or antenna efficiency, then a 
homogeneous head model with average tissue parameters is sufficient. This model is also able to 
closely predict the total absorbed power. Only for studies where detailed SAR (specific absorption 
rate) images are required, an inhomogeneous head model must be used e.g. in connection with 
the FDTD method. 

In section 2 the theoretical background of the hybrid method is presented. Section 3 gives a 
brief review of the PO for dielectric bodies, while section 4 concentrates on some aspects of the 
hybridization. An example with results is considered in section 5. 

2    Theoretical background of the hybrid method 

Details of treating metallic problems by the MoM/PO hybrid method can be found elsewhere (e.g. 
[2]), therefore we assume in the following that all metallic parts are assigned to the MoM-region. 
According to the example depicted in Fig. 1, metallic as well as dielectric surfaces are subdivided 
into triangular patches. On metallic surfaces, basis functions /„ according to [4] together with 
unknown coefficients ajlTl are used in the superposition of the surface current density J. 

For determining the matrix elements or the near- and far-fields, the radiation of such a basis 
function /„ in the presence of the dielectric body is required as indicated in Fig. 2. 

observation ^BSI^S^^^^^^Sfe^ 
point  wmmmmmMMmmmmmmMMmimmiiismm^ 

f^^^.^^^^jys^gag^^^j^t^^j^/ 

Fig. 2: Radiation of a basis function located at the source point r' in presence of the homogeneous 
dielectric body with material properties (ea, pi, a). 
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s+ 
(eo, iMt) 

(eo. Mo) 

The surface equivalence principle (e.g. [5]) is ap- 
plied and equivalent electric J and magnetic M 
surface current densities radiating in free space 
are introduced according to Fig. 3: 

J =    nxH(S+) (la) 

M = -hx E{S+). (lb) 

These currents are unknown. Within the MoM 
formulation, an integral equation is constructed 
and the currents are obtained from the solution 
of a system of linear equations.   To avoid this    FiS- 3: Equivalent electric and ^magnetic^ surface 
time and memory consuming process, we will 
investigate the PO to determine J and M in the 
next section. 

currents J and M radiating in a homoge- 
neous medium (so, ßo)- 

3    PO for dielectric bodies 

tangential 
plane 

(eo. ßa) kifl&gi 
J, M pllltel 

'Ml 

Similar to the PO approximation for metallic bodies, 
which is exact for an infinite plane, we locally ap- 
proximate the dielectric surface at a point rs by the 
tangential plane perpendicular to the normal vector 
h. Introducing the two reflection coefficients 

Tx = 
fcostfi - Jl e(^)2sin2 

r,,= 

Fie. 4: Approximation of the curved surface      c ,, . , 0      .....      .       ,        , of the two wave impedances by an infinite plane in order to deter- 
mine the PO currents. 

(2a) 

(2b) 

(3) 

(4) 

the equivalent currents can be found exactly for an in- 
cident plane wave with incidence angle $j (see Fig. 4): 

£jl-£2(^)2sin2i?i - cost?; 

ZyJl-e(%)2S™2#i  + COS!?; 

with the ratio 
, _ Zpd 

ZFO 

ZF<1 = 
Pi and 4F0 = W—, 

JFU = 

M' 

[ J - Tj. (/-««)- T|| ü« ] • Hinc(f3) (5a) 

(5b) 
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Here ü represents a unit vector perpendicular to n and rs — r'. An alternative formulation 
to eqn. (5) based on an application of the equivalence principle and the local constraint of an 
impedance boundary condition is derived in [6]. There the result, which is exact only for perpen- 
dicular incidence di = 0, is: 

JP°=    ^nxfl^r.) (6a) 

Mpo = -^nxEinc(rs). (6b) 

Even though the two PO approximations according to eqns. (5) and (6) look rather different, the 
deviation for typical examples and for various incidence angles di is usually less than one percent. 

Because equations (6) are simpler to apply and since the determination of di can be avoided, 
these formulations are preferred in the following. Note that in the shadowed region the equivalent 
currents are set to zero, the equations presented in this section are valid only in the illuminated 
zone. 

4    Some details of the hybridization 

As indicated in Fig. 1, the surface of the dielectric body is also subdivided into triangular patches. 
The equivalent surface current densities are expressed as linear superposition of basis functions 
with unknown coefficients: 

J = ^2aJ*fk (7a) 
k=\ 

M = ^aM,khk. (7b) 
k=\ 

The basis functions fk are identical to those used for metallic regions, hk is approximately orthog- 
onal to fk, see [7]. 

In principle, it might be possible to divide the surface of the dielectric body into a MoM- and a 
remaining PO-region. For instance, it could be useful to assign the shadowed part to the MoM- 
and the illuminated part to the PO-region. An example for such an allocation can be found in 
[3], where this principle is applied to a perfectly conducting sphere. 

However, for a dielectric body we have not implemented the necessary coupling between a dielectric 
PO- and a dielectric MoM-region. Hence, in the following we do assume that the whole surface 
of the dielectric body (not metallic parts located nearby) is treated by PO. In this case, all 
the coefficients a^k and aM,k in (7) can be determined by equating (7) with (6). After some 
straightforward manipulations one obtains 

1      /r+  ,   v_s   0.2,k — dl,k      r-i     ,-s ,„  N 

aj* = TT({Si + Sk)\sajc-s^\'Hiae{rk) (8a) 

^ = -jfl I (^ # it + ^ Si ** ) • Einc{n). (8b) 
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Some vectors and lengths required in this equation are defined in Fig. 5. Shadowing coefficients 

*-{: 
0       triangle T* shadowed 

triangle Tjf illuminated by the source 

have also been introduced in eqn. (8). 

fcth edge' 
length lk 

l2,k 

(9) 

Fig. 5: Definition of some vectors and lengths in the two triangular patches T^ adjacent to the fcth edge. 

5    Example and results 

Fig. 6: Hertzian dipole antenna 
radiating at a distance d 
in front of a homogeneous 
dielectric sphere. 

Hertzian dipole 
/ = 1.8 GHz 
Prad = 2W 

dielectric sphere 
Ed = 45 e0 

The simple example of a structure consisting of a Hertzian dipole radiating in front of a dielectric 
sphere has been chosen here as an example to validate the formulation. The advantage of this 
configuration is that an exact solution is available by means of a special Green's function [8, 9]. 
The disadvantage is, that no metallic MoM-region is involved. However, if the field strength at 
an observation point r in Fig. 2 radiated by a source (here the Hertzian dipole can be interpreted 
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as a basis function fn located at r') is correctly predicted by the PO approximation, which can 
be judged by considering this example, then the generalization to more complex geometries is 
straightforward. 

(a) equiv. electric current JF0 (b) equiv. magnetic current Mr 

Fig. 7: Magnitude of the equivalent currents on the surface of the sphere based on PO according to 
eqn. (6). 

The magnitude of the equivalent currents on the surface of the sphere based on PO is depicted 
in Figs. 7 (a) and (b). The shadow boundary is clearly visible in both figures: Only 26.3% of 
the spherical surface is illuminated, on the remaining 73.7% the current is approximated by zero. 
Comparing these currents to the MoM-results, which are not depicted here but which do not 
show the shadow boundary and have currents different from zero in the shadowed region, might 
lead to the conclusion that the PO solution cannot predict the scattered fields. The two radiation 
patterns in Figs. 8 and 9 demonstrate that the opposite is true. The solid line there represents 
the exact solution, the dotted line is the PO result. The two MoM solutions (dashed line: electric 
field integral equation EFIE, e.g. [10, 11]; dashed-dotted line: PMCHW formulation [12]) are in 
excellent agreement to the exact curve, while there are some differences visible in the PO solution, 
especially in the vertical cut in Fig. 9. However, e.g. for the optimization of mobile communication 
antennas, the achieved accuracy is sufficient, which is confirmed e.g. by the computed antenna 
efficiency, see Table 1. By hybridizing PO and MoM for the dielectric body as indicated above, a 
further improvement in accuracy can be expected. 

In Table 1 we have also compared memory and CPU-time requirement. The surface of the sphere 
is A = 3.66AQ = 165.5A2 with the free space wavelength A0 and the wavelength A in the dielectric 
material. We have used 5512 triangular patches, i.e. about 33 per square wavelength area. The 
memory requirement for the matrix of the MoM solution is about 4 GByte (this can be reduced 
to 261 MByte"using two planes of symmetry). The superiority of the PO solution becomes clearly 
obvious from Table 1. 
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100" 80" 
S.OdB Fig. 8: Horizontal radiation pat- 

tern (directivity) in the 
plane ■d = 90° as a func- 
tion of the angle ip. 

exokt 
 PO 
 MoM  (EFIE) 
 MoM   (PMCHW) 

Fig. 9: Vertical radiation pattern 
(directivity) in the plane 
ip = 0° as a function of 
the angle ■&. 

 MoM  (EFIE) 
— • -MoM   (PMCHW) 

6    Conclusions 

It has been shown that by hybridizing MoM for metallic structures with PO for dielectric bodies, 
a flexible and" fast tool is available e.g. for the optimization of antennas on mobile telephones 
operating at high frequencies (e.g. PCS 1800 system at 1.8 GHz) taking the effect of the human 
body into account. 
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TABLE 1: Computed antenna efficiency, CPU-time and memory requirement for the analysis of a 
Hertzian dipole radiating in front of a homogeneous dielectric sphere. 

exact 
solution 

MoM 
(EFIE) 

MoM 
(PMCHW) 

PO 

no. of triangles — 5512 5512 5512 

no. of basis functions — 16536 16536 16536 

antenna efficiency 0.8684 0.8690 0.8695 0.8904 

memory for the matrix — 4,07 GByte 4,07 GByte — 

computer Pentium 
PC 100 MHz 

CRAY T3E 
(32 nodes) 

CRAY T3E 
(32 nodes) 

Pentium 
PC 100 MHz 

CPU-time 11.3 sec 18.7 min 52.1 min 20.4 min 
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EMAP5: A 3D HYBRID FEM/MoM CODE 

Yun Ji and Todd H. Hubing 
University of Missouri-Rolla 

Abstract—EMAP5 is a numerical software package designed to model electromagnetic problems. It employs the finite 
element method (FEM) to analyze a volume, and employs the method of moments (MoM) to analyze the current 
distribution on the surface of the volume. The two methods are coupled through the electric fields on the dielectric surface. 

The filed behavior at dielectric/metal junctions is modeled by three-way basis functions. EMAP5 can model three kinds of 

source: incident plane wave, voltage sources on metal patches and impressed current sources in the finite element region. 

Three numerical examples are provided to demonstrate the validity of the code. 

I. FORMULATION 

Although details of EMAP5 formulation are provided in [1][2], a brief summary is provided 
below. The general structure of interest is shown in Figure 1. A dielectric volume V2 has electrical 
properties (£2, Ha)- It is enclosed by a surface S2. A conductive volume V3 is enclosed by a conductive 
surface Sc. The fields within V3 vanish. Vi denotes the volume outside of V2 and V3, and has electrical 
properties (£1, |ii). Vj is assumed to be free space. (Ei, Hi) and (E2, H2) denote the electric and 
magnetic fields in Vj and V2, respectively. The unit normal vectors for S2 and Sc are defined pointing 
outward toward Vj. The structure is excited by an incident wave (E1, H1) or impressed sources (Jlnt, 
Minl). The scattered electric and magnetic fields are (Es, Hs). The objective is to solve for the scattered 
fields (Es, Hs) or the surface electric current density on Sc. 

1.  Discretization of FEM    From Maxwell equations, the double curl equation in terms of E can 

written: 

Vx 1 

jö>m,n-r 
-VxE(r) + jCO£oerE(r) = -rt(r)- 

1 

}<ä\i0\i, 
-VxM"(r) (1) 

After multiplying Eq. (1) by a weighting function w(r) and integrating over the finite element 
domain V2, one obtains the FEM weak form as follows: 

1 
I 

JWHo^r 
VxE(r)   .(Vxw(r)) + jcoeoSrE(r).w(r) dV= J(nxH(r)).w(r)dS 

S2 

J""(r) + - 
1 

JWUol-i, 
-VxMinI(r) ■ w(r) dV (2) 

Tetrahedral elements are used to discretize the volume V2. Basis and weighting functions proposed 
by M. L. Barton.and Z. J. Cendes [3] are chosen here. Each basis function is defined within a 
tetrahedron and is associated with one of the six edges. The electric field E within volume V2 can be 
expanded as: 
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dielectric body 

conductive body 

Fig. 1. A dielectric obect and a conductive object illuminated by E\ H1 or Jmt, Mmt. 
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+ 
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Adi Add. LEdJ L° Bdd. Ljdj LsJ 

E(r)= IE,w,(r) 
n=l 

where Nv is the total number of interior edges, and {En} is a set of unknown complex scalar 
coefficients. 

The surface integral term in Eq. (2) can be evaluated by using a surface basis function f(r), which 
are discussed later. Using a Galerkin's approach, a discrete form of Eq. (2) is obtained: 

(3) 

where [Jd] is a set of unknown complex scalar coefficients for the surface electric current densities on 
Sd. Sd is defined as S2 if the conductive body is not adjacent to the dielectric body; Otherwise, Sd= S2- 
(S2 n Sc). The unknown coefficients [E] are partitioned according to edge type. The two categories are 
interior edges, which are denoted by a subscript i in Eq. (3), and dielectric boundary edges, which are 
denoted by a subscript d in Eq. (3). [g'm] is the forcing term. Details of how to evaluate the elements of 
[A], [B] and [gint] are provided in [1][2]. 

2. Discretization of MoM    The MoM surface integral equation is [4]: 

rc(r) = ^E(r) + j{ M(r') x V'Go(r,r')+j koT|0 J(r')Go(r,r') 
2 s 

_jHi>V'.J(r')VGo(r,r')}dS' 
ko 

(4) 

where r e S,   S=ScuS2, Tio and ko are the intrinsic impedance and wavenumber in   free space, 
respectively, and 

-jko|r-r'| 

- 471 r - r'| 

is the Green's function in free space. The surface equivalent electric and magnetic currents are defined 
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Cdd     Cdc [jdl "Ddd   ( )TEdl F<i 
Ccd      Cdd A Dcd   ( >JLoJ Fc 

J(r') = nxH(r')      r'onS; M(r') = E(r') x n r'onSd. 

M(r') vanishes on Sc. JCrO and M(r') can be approximated by using the triangular basis function fn(r) 
proposed by S. M. Rao et cd. [5]. 

On surface Sd, the MoM basis function fn(r) and the FEM basis function w„(r) are related by: 

Wn(r) = nxf„(r) reSd 

J(r'), M(r') can be expanded as: 
Ns Nd 

J(r')=nxH(r')= I J„f ■,(!■')      M(r') = E(r')xn= £E„f,.(r') 

where Ns is the total number of edges on the surface S, and Nd is the total number of edges on the 
surface Sd. {Jn} and {E„} are unknown complex scalar coefficients. 

The weighting functions chosen are fn(r), n=l,... Ns. After fn(r) are multiplied to Eq. (4), Eq. (4) 
can be discretized into Eq. (5), which is a matrix equation. Edges on Sd and Sc are grouped together 
respectively. 

(5) 

[F] is the forcing term due to the incident wave. A description of how to evaluate the elements of [C], 
[D] and [F] are is provided in [1][2]. [Jc] ,[Jd], [EJ, [Ed] can be solved from Eq. (3) and Eq. (5). 

H        COMPONENTS OF THE EMAP5 SOFTWARE PACKAGE 

The EMAP5 software package includes three major components: SIFT5, EMAP5 and FAR. 

1. SIFT5: The Input File Translator Standard Input File Translator Version5 (SIFT5) is 
designed to generate input files for the field solver EMAP5. SIFT5 reads a text file in the SIFT format 
[5]. Users can describe the structure of interest by using eleven keywords shown in Table I. The 
physical geometry, source, and the output requirements must be specified. 

The input file for SIFT5 should have a .sif suffix. The output file of SIFT5 has a .in suffix. For 
example, if a user has composed an input file El.hbs, the following command will generate an input 
fileEl.inforEMAP5. 

% sifi5 El.sif 

2. EMAP5: The FEM/MoM Field Solver EMAP5 is the hybrid FEM/MoM field solver. It 
reads a file generated by SIFT5. The input file should have a .in suffix. A file with a .log suffix is 
generated to log running status and error messages. EMAP5 will print fields within areas specified by 
the keyword "output", to one or more output files. All equivalent surface currents J and M will be 
printed out by using the keyword "default_out". An example of how to run EMAP5 follows: 

% emap5 El.in 
EMAP5 will read the mesh file El.in as its input. In addition, El.log will be generated immediately as 
the log file. 

3. FAR: The Far Field Calculator FAR is a program used to calculate the far field radiation 
pattern. The far fields are calculated from the equivalent surface currents J and M. FAR needs two 
input files. One is the file generated by SEFT5, and the other is the default output file generated by 
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Table I. Syntax of keywords for SIFT5. 

keyword position 
coordinates 

cell 
dimensions 

sub attributes 

# 

unit number in m, cm or mm 

boundary xl yl zl 
x2 y2 z2 

celldim pi, p2 Ap axis (x, y or z) 

dielectric xl yl zl 
x2y2z2 

e' e" (The real and imaginary part of 
the complex permittivity) 

conductor xl yl zl 
x2 y2 z2 

Ax Ay Az 

eplane frequency,91, (pi, 62, <p2, magnitude, 

vsource xl yl zl 
x2 y2 z2 

frequency, polarization (x, y, z), 
magnitude, 

isource xl yl zl 
x2 y2 z2 

frequency, polarization (x, y, z), 
magnitude, 

output xl yl zl 
x2 y2 z2 

axis(x, y, z) filename 

default_out filename 

EMAP5. Assuming the default output file of EMAP5 is El.out, and the input file is El.in, the 
following command will run the far field calculator. 

% far El.in El.out far.out 
where far.out is the file to which the far field will be printed when the program terminates. The far.out 
file will contain an array of (6, <p, Ee, E(p) data. Ee and E,,, whose units are volts/meter, are the E fields 
at point (R, 9, <p) in spherical coordinates. 

IE.     NUMERICAL RESULTS 

The first configuration is a flat dipole antenna in free space. Although EMAP5 is a FEM/MoM 
code, it can model configurations that require only one method to analyze. In this case, only the MoM 
portion of the code is employed. As shown in Figure 2, a center-fed flat dipole has a width of one 
millimeter and a length of 44 centimeters. It is fed by a 300-MHz voltage source with a magnitude of 
one volt. The input file for SIFT5 is as follows: 

# example 1: a flat dipole antenna driven by a voltage source in the middle 
unit 0.5 mm 
conductor        0   0  2   880   2  2    10 1   1 
vsource       440   0  2  440   2  2  300 x  1.0 
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output 0   0 2  840   2  2      y example!.out 
The structure is divided into 268 triangles. The total number of unknown edges is 438. The output of 
EMAP5 is the surface electric current J along the flat dipole. The current at the source is given by: 

I = Jf*W 
where Jf is a complex number denoting the surface current across the source edge, and w is the width 
of the edge. In this example, two edges are used to model the source. Thus, the total current is the sum 
of currents across the two edges. The input impedance of the dipole is given by: 

l.Ov 
Zi„ = 

I 
Figure 3 shows the input resistance, input reactance and impedance obtained by EMAP5 as the 

dipole length is adjusted from 38-53 cm, with a comparison of analytical results by treating the flat 
dipole as a cylindrical dipole with an equivalent radius[6]. Good agreement between EMAP5 and 
theoretical results is achieved. 

The second configuration, as shown in Figure 4, is a flat dipole consisting of two quarter- 
wavelength traces driven by a 533-MHz voltage source with a magnitude of one volt. In this case, the 
source is located within the FEM region. Since the width of the traces is very small compared with the 
width of the FEM region, a non-uniform mesh is used to discretize the structure. Near the junction and 
source areas, small cells are used. Initially, the relative permittivity of the dielectric slab is set to 1.0. 
Thus, the configuration is a half-wave dipole in free space. The source is modeled as a current filament 
that coincides with two tetrahedron edges. After the E fields along these two edges are obtained, the 
voltage drop along the current filament can be calculated. The input file for SIFT5 is as follows, 

# example 2: a dipole driven by a current source located within the FEM region 
unit 0.25 mm 
boundary    0    0    0  164 82 2 
celldim       0        2     2      x 
celldim       2     162   16     x 

£ 
O 

~w m,. 

Fig. 2.   A flat dipole with a width 
width of 1 mm. 

Fig. 3.   Input impedance of a flat dipole length of 44 cm and a 
antenna with L=38~53 cm, width = 1 mm. 
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Fig. 4. Geometry of a PCB antenna. 

celldim 162 164 2     x 
celldim 0 40 10    y 
celldim 40 42 i    y 
celldim 42 82 10    y 
celldim 0 2 1     z 
dielectric 0 0 0 164 82 2 1.0   0.0 
conductor -480 40 2    82 42 2 10   1    1 
conductor 82 40 0  644 42 0 10   1    1 
isource 82 41 0    82 41 2 533 z   1 
output -480 40 2     0 42 2 y example2.out 
output 164 40   0  644   42   0    y  example2.out 

The FEM region is divided into 1200 tetrahedra. The boundary is divided into 2632 edges. The 
number of unknown edges for the final matrix equation is 1900. The current distribution on the traces 
obtained using EMAP5 is plotted in Figure 5. For comparison, the results obtained using the 
Numerical Electromagnetics Code (NEC) and the IBM EM Simulator are also plotted. Figure 6 shows 
the results obtained by EMAP5 and the IBM EM Simulator when the dielectric constant is set to 10.0. 
In both cases, the results obtained using the different methods are similar. 

The third configuration shown in Figure 7 is a dielectric cube with 0.2A. on a side, where X is the 
wavelength in free space. It is illuminated by an incident wave, which travels along the +z axis. The E 
field is polarized along the x axis with a magnitude of one volt/meter. This example has been 
previously analyzed by T. K. Sarkar et al.[7], B. J. Rubin and S. Dajiavad [8]. First, the dielectric 
constant of the cube is set to l-jlOOO. The input file for SIFT5 is as follows, 

# example 3: a dielectric cube (Er =l-jl000) illuminated by a plane wave 
unit        1   mm 
boundary     -50  -50  -50 50 50 50 
celldim        -50   50   25   x 
celldim       -50   50   25   y 
celldim      -50   50   25   z 
dielectric -SO -50  -50 50 50 50 1.0 -1000.0 
eplane     600  90     0    0    0 1.0 
default_out    example3.out 
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The dielectric cube is divided into 64 bricks, then 320 tetrahedra. In Figure 8, the normalized far 
field obtained by EMAP5 is compared to those calculated in [7] [8]. Second, the dielectric constant of 
the cube is set to 9.0. The "dielectric" line in the input file for SIFT5 need to be changed as follows, 

dielectric-50 -50-50 505050  9.0 0.0 
In Figure 9, the normalized far field obtained by EMAP5 is compared to those calculated in [7] [8]. In 
both cases, the results obtains by EMAP5 agrees with the references. 

» 20.0 

4 8 12        16       20        24       28 

Distance from the left end (cm) 

4 8 12 16        20        24 

Distance from the left end (cm) 

Fig. 5. Current distribution 
on the dipole(£r=1.0). 

Fig. 6.   Current distribution 
on the dipole (8^=10.0). 

— IK. Sato et al. 
B.J.RubBiandS.Da^va( 

•EMAP5 

'0.0      30.0      60.0      90.0      120.0     150.0     180.0 

Theta (degrees) 

Fig. 7. A dielectric cube Fig. 8. Comparison of far field 
illuminated by a-plane wave    Ee when £r = 1-j 1000. 

30        60        90       120      150       180 

Theta (degrees) 

Fig. 9. Comparison of far field 
Ee when£r=9. 
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Abstract 

An efficient hybrid calculation method combining the Method of Moments (MoM) with a Multiple 
Multipole (MMP) technique is proposed. It provides an accurate modelling of complex metallic 
structures in regions treated by the MoM, while dielectric bodies are taken into account by means of 
the MMP. An iterative coupling scheme is applied, taking the scattered field of the one method as a 
corrective term to the other. This kind of coupling requires only small changes to the conventional 
MoM and MMP formulations, hence it is very attractive for the combination of already existing 
codes. Data exchange is done using the Message Passing Interface (MPI) allowing single processes to 
be executed in parallel. 

1  Introduction 
Three independent „classes" of numerical techniques have so far been established for computational 
electromagnetics: The first might be called as method of fields, as the electric and magnetic fields are 
the basis of calculation. It yields differential equations and generally necessitates a 3-dimensional dis- 
cretisation of the space considered. The latter has to be limited by absorbing boundary conditions, but 
may contain any kind of inhomogeneities. Representatives of this class of numerical methods are e.g. 
the Finite Element Method (FEM) and the Finite Difference Time Domain (FDTD) technique. 

In a second class, the method of sources, currents and charges are taken as the basis of the calcula- 
tions, which leads to integral equations that are usually solved applying the Method of Moments 
(MoM) [1]. With this class, only a 2-dimensional discretisation is necessary for metallic surfaces and 
for dielectric bodies when using the surface equivalence principle [2]. The infinity of free space is 
easily and exactly taken into account, which makes this method particularly attractive for solving 
radiation problems. Bodies with inhomogeneous dielectric properties can be treated using the volume 
equivalence principle [3], which, however, is very time- and memory-consuming when the bodies 
considered are electrically large. 

In the third class, the electric and magnetic fields are calculated by a weighted superposition of 
particular solutions of Maxwell's equations, the so-called Multiple Multipoles (MMP) [4]. While the 
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MoM is more attractive for metallic structures with sharp edges (e.g. thin wire antennas, flat plates, 
cubes, etc.), bodies with a smooth surface (e.g. sphere-like dielectric bodies) can often be dealt with in 
a more efficient manner by applying the MMP technique. 

With a great number of electromagnetic radiation and scattering problems hybrid techniques 
combining the advantages of the single methods allow the investigation of very complex structures 
and yield good results with small computation time and moderate main memory requirements (e.g. a 
hybrid MoM / PO method as presented in [5] or the use of a specific Green's function in connection 
with MoM, see [6]). A combination of MoM and MMP can be carried out in different ways: In [7] 
rooftop basis functions (as usually applied with the MoM) have been included as a new type of basis 
function in the MMP, while in [8] the two methods are directly coupled. In the latter, one large system 
of linear equations is constructed by using the generalised point matching principle. In the following a 
new iterative coupling mechanism combining MoM and MMP is introduced. It avoids large system 
matrices and consequently offers short calculation time and small memory requirements. A similar 
iterative scheme but for the combination of two MMP calculations has been proposed in [9]. 

In section 2 and 3 the theoretical background of the two conventional techniques MoM and MMP is 
briefly reviewed, while sections 4 and 5 concentrate on the hybrid formulation and the aspects of 
coupling the two methods. In section 6 the possibilities of data exchange applying the MPI are 
presented. An example is given in section 7. 

2  Method of Moments (MoM) 

Here the MoM is restricted in its application to 
metallic structures. Consider the mobile telephone 
depicted in Fig. 1. The surface current density J 
on the case and the line current / along the 
antenna are approximated by a linear 
superposition of basis functions /„ with unknown 
coefficients a„: 

J = !«/•// and   / = £«„'•//. (1) 

These   currents   radiate,    and   the    scattered 
electromagnetic fields can be expressed as Figure 1: Calculation situation 

£,i&v=^W+4/{/}=Z«/-4-'{7/}+S«./-4/{/.i} (2a) 

(2b) 
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Operators 2J', 3%, 3% and SEj, have been introduced in eqns. (2) representing the electric and 

magnetic field strengths, respectively, caused by J and /, e.g. 2/ is defined as follows: 

A A 

G(f,r') denotes the free space Green's function, and e,, ^ are the material parameters in region O 

according to Fig. 1. 

3  Multiple Multipole Method (MMP) 

When applying the MMP method, the calculation of the scattered electric and magnetic fields is based 
on a direct field expansion. From the scalar wave equation (Helmholtz equation) 

Ay/ + k2ii/ = 0 (4) 

in the case of spherical coordinates r = \r, 6, tj>) the scalar wave functions \j/mn can be derived as 

^)(it,r) = «i"(*r).P,w(cose)-e'"' . (5) 

Here z{
n
c) denotes the spherical Bessel functions of the nth order, while Pj™1 are the associated 

Legendre functions of the 1st kind with the order \m\ and degree n. Herewith, the vector wave 
functions L, M and N can be constructed as follows: 

%l = V• V%  ,    «2=Vx[^ f] ,   N% = jV x V x [^ r] (6) 

For a linear, homogeneous, isotropic medium without charges, the scattered electric field can now be 
formulated as 

Erir) = l t  JZF ■(«„ • W.*0 + ft- ■^(k,r))+(cml.M^(k,r) + dm,.M^(k,r)) (7) 

where ZF denotes the field wave impedance in the medium considered, and am„, bm„, cm and dm„ 
are unknown coefficients of the field expansion. When assuming b^ =dm„=0 (for unbounded 
space), eqn. (7) is called a multipole expansion, while in the case of am„ =cm„ = 0 the now 
formulated normal expansion is regulary in the origin of the coordinate system. In an arbitrary interim 
region all four terms of eqn. (7) have to be considered. To obtain the unknown coefficients, the 
boundary conditions on the surface between any two regions are fulfilled numerically (e.g. by 
applying a point matching algorithm). In a similar way, the scattered magnetic field is given by 

Hr(r) = lt K-M^(k,r) + bm„-M^(k,r))-j/ZF ■{cm,-N%{k,r) + dm„-N%(k,r)) (8) 
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4  Hybrid method 
In Fig. 1 an exemplary calculation situation of a scattering problem is shown: A mobile telephone 
with monopole antenna is radiating in the close vicinity of the human tissue. The handset (metallic 
case and wire antenna) is located in the homogeneous region O with material properties e,, ^ . In this 
example, the region containing the handset represents the only MoM-region; the currents / on the 
metallic wires and the surface current density / shall be computed by means of the MoM. The 
antenna radiates in the presence of a homogeneous dielectric body (region © with material properties 
s2, Hz), which shall be taken into account by means of MMP. In any region, the electric and magnetic 
field can be expressed as 

E(r) = E?°M(r) + Es
MMP(r) + Et(r)     and    H{r) = H^M{r) + Hf4P{r) + Hl{r) . (9a,b) 

Index i represents the incident field (£,, H, are the known impressed sources in the region 

considered), while index 5 denotes the scattered fields. E"°M and H"°M ace. to eqn. (2) denote the 

contribution of the MoM-region, while E^MP and E^MP ace. to eqns. (7) and (8) are the scattered 
fields calculated by means of the MMP technique. 

For the MoM, the unknown coefficients aJ
n
J ace. to eqn. (1) can be obtained from the boundary 

condition £M =0 on the perfectly conducting surfaces. Eqn. (9a) with (2a) leads to the integral 
equation j\ 

1«; -^{//L+ix -s?{//L=-*..- -*r • (10) 
n=\ n=\ 

As compared to a stand-alone MoM formulation, additional terms E"^ are present in eqn. (10) 

representing the effect of the MMP region on the currents in the MoM region. 

In the case of MMP, the unknown coefficients amn, bmn, cmn and dmn ace. to eqn. (7) and (8) can be 
obtained by fulfilling the boundary conditions between any two regions. Considering the continuity of 
the tangential field components, this yields in our example (with only two regions O and ©) 

£
«,1«D ~ £j,2«m - "AM + hl,2 - A.tan (1 la) 

H%L - KZ = -Ä,-,, + Hia - HSZ ■ (1 lb) 

In eqn. (11) E"^ and H^ are corrective terms ace. to eqn. (2) to the standard MMP formulation, 

caused by the influence of the currents radiating in the MoM-region and taking the coupling between 
the MMP- and the MoM-region into account. 

In a more general situation, more than one MoM-region (e.g. sources outside and inside the dielectric 
body) can be easily taken into account. 
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5  Iterative coupling of MoM and MMP 
The coupled linear system of equations as defined by eqn. (10) for any MoM-region and by eqn. (11) 
for the MMP-region (here an overdetermined system is solved by applying a least square approach) is 
now solved iteratively as follows: 

As shown in Fig. 2, first the locations of the 
matching points rfa"> are introduced to the 

MoM-process, then the observation points of the 
MoM-region r/*"" are exchanged to the MMP- 

calculation using MPI (see section 6). Now the 
matrices of both methods can be formulated - this 
computation needs to be carried out only once 
(and the LU decomposition can be kept in memory 
leading to a fast solution by backwards 
substitution). At the begining a MoM-calculation 
ace. to eqn. (10) is carried out, assuming that the 
corrective terms E^ are zero for this „startup- 

calculation". This leads to the coefficients a/-', 

and the field E""M ace. to eqn. (2a) can now be 

computed at the matching points r/atp. Hf°M 

can be computed as well ace. to eqn (2b) and with 
the help of eqn. (11) in a second step the 
expansion coefficients am„, bm„, cmn and dmn of 
the MMP-algorithm can be obtained taking the 
corrective terms of the MoM-region(s) into 
account. 

r "Startup-calculations" 
matching 

points    , 
MOM! 

formulation 
of the matrix 

€ Iteration... 

observation points    ■?.<■, •':': 
.MoM-region   .-'." ",; ,i' ';••_ - 

formulation 
of the matrix 

fields at the 
matching points 

pMoM/~MMF\ MoM 

fields at the ,. ■..■ 
observation points   .:';' 

-►:.;MÖM ?MMP/~M0M\ 

solution to the 
linear system 
of equations 

solution to the 
linear system 
of equations 

■... until convergence criterion is fulfilled 

e Calculation of fields 

Figure 2: Iterative calculation scheme 

Using eqn. (7), now E^a,p can be calculated at the matching points r"oM of the MoM-region (note 

that for the MoM a Galerkin formulation is used and only the corrective terms are applied in a point 
matching sense), and in a new iteration the MoM integral equation (10) can be solved again, taking 
now the corrective terms E"MP into account. Then a further MMP-calculations follows, and so on. 

This iterative sequence of calculations applying the MoM- and MMP-algorithm is terminated, when 
the following criterion is fulfilled: 

\ä^M-äi
MoM\2l\pii

M°M\2<e. (12) 

The vector S"°M =(af...aJ
Nj a,'...a^ )r   contains the MoM-coefficients of the ith iteration, and e is 

a bound for the relative change of the currents in the MoM-region. 
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6  Communication using the Message Passing Interface (MPI) 

As outlined above in section 5, we have to couple the MMP and MoM solution techniques. One 
might write a single code and perform the necessary data exchange (see Fig. 2) via global data 
structures, e.g COMMON blocks in the FORTRAN programming language. However, it is our 
intention to use already available MMP and MoM codes, in particular the 3D-MMP code [10] and the 
MoM code FEKO developed at the University of Stuttgart. These codes should run independently 
from one another and only a few changes should be required to the individual source codes. 

One might use UNIX pipes for the communication as proposed in [11] or files on a hard disk where 
the different processes write and read the data. Our choice, however, has been to use MPI [12,13]. 
This provides a very fast and flexible means for the communication. It is also highly portable, since 
MPI implementations are available for a wide range of platforms and operating systems. We use the 
freely available MPICH package [14] on a cluster of connected PCs (running under Linux or 
Windows NT) and IBM as well as HP workstations (running under IBM-AK and HP-UX), 
respectively. A further advantage of using MPI as compared to e.g. pipes or files on local hard disks 
is, that the different MoM and MMP processes can easily be executed in parallel on different 
workstations. 

Once the initialization of MPI has been performed (only a few lines of additional code), the 
communication as indicated in Fig. 2 can be done by just using matching pairs of MPI_SEND and 
MPI_RECV commands. With these commands, single variables (such as the number of matching 
points corresponding to the array dimensions or a flag indicating whether the criterion (12) is fulfilled 
or not so that both MMP and MPI processes know whether to continue the iteration or not) can be 
sent, but it is also possible to send whole arrays with a single command, e.g. the field strength values 
£MMF^M°M^ during the iteration (see Fig. 2). 

7  Example 

As an example, Fig. 3 shows a mobile 
handset consisting of a cuboidal metallic 
case with the dimensions 2 x 6 x 12 cm3 and 
a monopole antenna of length h = 8 cm and 
a wire radius p = Q5mm. The handset 
operates at / = 900 MHz and the antenna 
radiates a power of P, =2W. For EMC- 
investigations, the human head is modeled 
as a homogeneous lossy dielectric sphere 
(d = 2r = \$cm) with the parameters 
£r=50, nr = l and a = l3S/m. The 
position of the handset to the spherical head 
model is shown in Fig. 3. 

h=80mm 
p=0.5mm 

/= 900 MHz 

Figure 3: Example: Handset in front of a 
homog. spherical head model 
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The following Fig. 4 shows the x-component of the electric nearfield along the x-axis (y = z = 0). In 
the range I2cm<x<14cm the observation point is inside the metal case, in the range 
- 9 cm < x < +9 cm (grey area) it is situated inside the dielectric sphere. 
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[V/m] — 

\ 
\ 

ISO \ 
\ 

x in fcm] 

Handset in front of a dielectric sphere 

Im{Z,J 

in[fi] 

loo 

B5 

i 

-60 

-65 

-75 

r/> -*r" 
oM-MMP 

Z.)     Im(Z,} 

oM-GRF 

Z.) Im(Z.) 

II M 

— Re{ 

M 

 Re( 

1          1          1           1 
1              2               3               *              S               6               7 

no. of iteration * 

real and imas. oart of Z. in F£21 «F imp? Br 
H.10.OT 

Figure 4:  \EX\ along the x-axis 
Figure 5: 5R{Za } and 3{z„ } as a function 

of iteration number 

The nearfield data were calculated applying the MoM-MMP technique with one expansion each for 
the region inside and outside the dielectric sphere (both located in the centre of the sphere and with a 
maximal order nma =8) and 312 matching points on the surface of the sphere. In comparison a 
second calculation applying a MoM technique using a special Green's function (GRF) as presented in 
[6] was carried out. Fig. 4 shows a good agreement between the two calculations. Fig. 5 shows the 
real and imaginary part of the input impedance of the monopole antenna as a function of the iteration 
number. It can be seen from Fig. 5 that only a small number of iterations is required. The following 
Table 1 compares the calculation time and the main memory requirements for the two methods: 

MoM - MMP MoM - GRF 
Calculation time 6,6 min 87,7 min 
Main memory 7,5 MByte 1,1 MByte 

Table 1: Calculation parameters for the example 

8   Conclusions 
It has been shown that the analysis of metallic structures radiating in the presence of dielectric bodies 
can effectively be carried out by applying a hybrid MoM-MMP technique. An iterative coupling of 
the two methods (e.g. using Message Passing Interface (MPI) for data exchange and executing the 
single processes in parallel) requires only small changes to the conventional MoM and MMP 
formulations, hence it is very attractive for the combination of already existing codes. In an example, 
the radiation of a monopole antenna on a mobile handset in the close vicinity of the user's head has 
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been considered. Already with a small number of iterations the hybrid technique yields good results 
with small requirements of main memory and calculation time. 
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Abstract 

This article reviews the development of an algorithm for analyzing planar, periodic structures and predicting 
their specular reflection and transmission characteristics. The hybrid technique is based on the application 
of edge-based, finite element modelling within the structure and Moment Method radiation integrals on the 
exposed surfaces. 

1 Introduction 

The analysis of planar, periodic structures and the ability to predict their performance characteristics as Frequency 
Selective Surfaces (FSS) is becoming an increasingly difficult problem. When an FSS design includes exotic 
materials or complex shaped conducting elements, it cannot be analyzed with a technique specifically developed 
to compensate for any one design feature because they are often incompatible with one of the other features. There 
is a need for the development of a new algorithm that will allow for the accurate modeling and analysis of an 
FSS designed with several advanced features. It must be capable of providing specular reflection and transmission 
characteristics in response to an incident plane wave of arbitrary direction and polarization and still provide the 
accuracy and speed necessary to be a good design tool. 

This paper summarizes the development of an algorithm which reduces the analysis of a planar, infinite FSS 
to a matrix equation using the Hybrid Finite Element Method (HFEM) [1]. It combines Finite Element Modeling 
(FEM) of the interior of the FSS structure with Method of Moments (MoM) radiation integrals applied to the 
exposed surfaces. A computer program was also created to implement the algorithm and validate its predicted 
results by comparison with other techniques. 

2 Problem Description 

The generalized model of an FSS used for the development of this algorithm is shown in Figure 1. The angle 7 is 
called the skew angle and is used to measure the angular shift between consecutive columns in the x direction. The 
translational shift distance in the z direction is Ac cot 7. The "front" face is defined as the surface upon which a 
plane wave is incident and occurs at y = Yo, while the "back" face is the opposite surface at y = Yi, where Yo < Yi. 
The angles 77 and a describe the direction of propagation of the incident wave, p = — ß/ka = — sin 7) cos ax+cos rjy— 
sin 77 sin az. The polarization vectors are defined by first creating a vector a = cos ax + sin az. Perpendicular 
polarization can then be defined as e± = y x a = sin ax — cos ay, and parallel polarization can be defined as 
ej| =p x ex = — cos r\ cos ax — sin rjy — cos 77 sin az. Finally, the polarization of the incident field is defined by the 
angle ipp as e — cos<ppe± +sinippe\\. This allows us to describe the incident plane wave using Eqn. 1. 

Ein = eEinA
ut-k'^) = eEi7le

j(wt+^) (1) 
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Figure 1: Generalized Geometry of a Frequency Selective Surface (FSS) 

3    Analysis 

Assuming the FSS is planar and infinite, the fields and currents within the structure must obey Floquet's Theorem; 
Eqn. 2. This limited the analysis to a single, primary cell of the FSS because it equated the fields and currents 
anywhere within the structure to phase-shifted copies of the fields and currents in a primary cell. 

V(x + mDx,z + nDz + mDxcat'y) = \j,(XlZ)e-'k'mD'e-jk'(nD-+mD'cot'l) (2) 

where kx = k sin rj cos a 

and kz — k sin tj sin a. 

The assumption that the FSS is planar and infinite also allowed the Equivalence Theorem to be used to divide the 
problem into three regions of interest: the free space region in front of the FSS (y < Y0), the structural interior of 
the primary cell (Y0 < y < Yi), and the free space region behind the FSS (Yi < y). These regions were analyzed 
separately, see Figure 2, but are linked by the resulting equivalent electric and magnetic surface currents defined 
in Eqn. 3. 

_J7 = -72A = -yxH(y = Y0) (3) 

Mi_ = -M2A=yxE{y = Y„) 

J3 = -J2B=yxH(y = Y1) 

Th = -Mas = -yx~E(y = Y1) 

Modified field equations were used to allow the FSS design to contain exotic materials, including bianisotropic 
materials. These equations are 

D   =   eaT?-E + %m-B 

H   =   ß0^-B-fme-E 
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Figure 2: Three Sub-Regions of the Original FSS Problem 

and they produced the reduced form of the wave equation shown in Eqn. 4. 

L(E) = V x pF- (V x !)] +jkoVo fV x (fme- B) -f^ • (V x 1)] - fcp7- E = 0. (4) 

The inner product of the wave equation with an unknown testing function, W, created the weak form of the wave 
equation, shown in Eqn. 5. 

{L<P>*) = HJ 
(V xfl-i?• (V x£) -k%W' -1?-E 

dV' 

+jk„v° ff (J2A - M2j4 - xm.) • WdS 

+JM. // p2B - M2B ■ Xme) -W dS = 0 (5) 

This weak form of the wave equation was applied to the interior region of the FSS structure's primary cell. The 
primary cell was divided into tetrahedra and the electric field and testing function were modelled as the weighted 
sum of edge-based, vector expansion functions defined over these tetrahedra. 

t 

(6) 

(7) 

The expressions in Eqns. 6 and 7 were substituted directly into the volume integral portion of Eqn. 5. 
The weighted sum approximation of the electric field in the interior was also used to determine the magnetic 

surface currents in the two free-space regions using Eqn. 3. These currents were expanded over the surface of 
the entire FSS structure using Floquet's Theorem and their radiated fields were calculated. (The electric current 
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radiation was suppressed because the use of PEC equivalence to separate the regions created equal magnitude 
image currents in the opposite direction.) These radiation expressions were simplified by transforming them into 
the spectral domain using the Fourier Transform. This reduced the convolution integrals into multiplication, 
changed derivatives into dot products and accelerated the convergence of the Floquet summations. The resulting 
radiated fields were then inverse transformed and combined with any incident fields present (region 1 only) to get 
the total fields in each region. Finally, the total fields were used to derive new expressions for the surface currents 
which were used to evaluate the surface integrals in Eqn. 5. 

A matrix equation was derived by setting the derivatives with respect to the testing function weights, dj, equal 
to zero. This equation is 

\Aii}[a) = h] 

where 

\Af, -ill +AiÄ • [xem • (v x *;) - (v x (sroe •**))] 

E    —^   " 

dV 

(8) 

(9) 

i,j€Slori,j€S2 
DxD,km 

-M/j \Kxmi fczmn) ' -* \™xmi ^zmn) ' *j (™jmj ^zmn) 

E 
i,jeSlori,j6S2 

and 

i,jeSlori,j6S2 

■j.i = J -2ÄeW- [yx (cos ippe{l - sin <p„e±)] • 5^^ (ßx,ßz);   j £ 51 
\ 0; else 

* (fe) = 9 [*(x)] =  /7* (i)e-'%rsdxdz 

(10) 

_ 2irm 
"'xm — —JZ       h / 

ooo 
KXKZ 0     K0 — Kx 

27TO     27rmcot7 

-D7 
+

 —DT^
+1 kymn — V "'o ~ *xm      ™zm 

The solution to the matrix equation is the complex weights, Cj, of the finite element approximation of the 
electric field. The surface currents derived from this approximated field solution were used to determine the 
reflection and transmission coefficients of the FSS. 

R± = £H:ö^Ä'w'*i(A'Ä)rCOS¥V (11) 

E« 
i6S2 

1 
Sx •/■*<(&,&) 

An = 
iesi 

[DxDzßy 

1   V 7 •¥<(&, A,) DxDzß, *<PT 

and 

5> 

/= 

i 

[DxDzßy 
?|[-/-*i(/?x,Ä) 

0      0 
o     ß, 
0      -ßy 
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4    Results 

4.1    Exotic Materials 

A uniaxial dielectric has /v1 = I, Xme = 0. and a diagonal relative permittivity tensor, e7, with two of the three 
non-zero terms equal to each other. The axis with the unique permittivity component is call the optical axis. A 
slab of uniaxial material allows for three scenarios to be examined: Case I is when y is the optical axis, Case Ila is 
when z is the optical axis and the incident field is in the y — z plane, and Case lib is when z is the optical axis and 
the incident field is in the x — y plane. The reflection coefficients of all three cases were analyzed using the HFEM 
algorithm and comparisons with exact calculations are shown in Figure 3. In each case, the primary cell of the 
FSS was a cube 1cm long on each side and divided into forty tetrahedron. The interior electric field was modelled 
with sixty edge-based, vector expansion functions and the frequency was 1GHz. The ordinary relative permittivity 
values were set to 2 and the optical axis' relative permittivity value was 4, resulting in expected Brewster angles 
of 8B,1 ~ 49.1°, BBtIIa ~ 67.8°, and 0BjIb ~ 54.7°. The ability of the HFEM algorithm to accurately locate 
the Brewster angles in each case verifies the algorithm's capability to analyze FSS designs which include exotic 
materials. 
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Figure 3: Uniaxial Slab Reflection Coefficients and Brewster Angles 

4.2    Inductive Screen 

An inductive screen is a thin layer of conductive material with an array of shaped apertures cut into it as shown 
in Figure 4. Inductive screens act as high pass filters with cutoff frequencies inversely proportional to aperture 
size. Zarillo and Aguiar calculated the transmission coefficient for an inductive screen based upon a "one-mode" 
approximation of the induced currents as a known function[2]. Figures 5 and 6 compare the HFEM algorithm 
with Zarillo and-Aguiar's results for power transmission vs frequency through a single layer, square inductive 
screen with a = b = 0.8DX = 0.SDz and a plane wave incident at 30°. The electric field around the screen was 
modelled using 213 linear vector expansion functions.   Figure 6 also includes a plot of the total power in the 
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directions of primary reflection and transmission. The curve accurately predicts the occurrence of a grating lobe 
above Dx/\ = 0.67, where the total power drops to approximately 0.707. With no lossy materials in the design, 
the power loss can only be accounted for by the appearance of grating lobes. 

Figure 4: Geometry of a Square Inductive Screen 
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Finally, Lee. et. al. calculated the power transmitted through a double layer screen with a = b = 0.7.0, = 
0.7DZ and h = 0.2a[3]. They used a mode matching technique that applies the Moment Method to a frequency 
domain integral equation. Figure 7 compares Lee's results with the HFEM algorithm using 404 linear vector 
expansion functions to model the electric field between the screens. While the single layered inductive screens 
were positioned halfway between the front and back faces of the finite element structure, the double layered screens 
were positioned directly on the faces of the model. 
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5    Conclusion 

The HFEM algorithm developed and reviewed here calculates the reflection and transmission coefficients of ad- 
vanced Frequency Selective Surfaces. Although it is based on the assumption of infinite, planar FSS structures, 
it has demonstrated the ability of a single technique to accurately model complex material parameters and both 
single and double layered inductive screens with the same results as three other distinct analysis tools. 
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Generalized Networks for Waveguide Step 
Discontinuities 

Mauro Mongiardo, Member, IEEE. Peter Russer, Fellow, IEEE, Marco Dionigi and Leopold B. 
Felsen, Life Fellow, IEEE 

Abstract— We have recently introduced an architecture 
for systematically dealing, in an efficient and rigorous man- 
ner, with electromagnetic fields representations and compu- 
tations in complex structures. The approach is based on 
the topological partitioning of the complex structure into 
several subdomains joined together by interfaces. The sug- 
gested framework accommodates the use of different an- 
alytical/numerical methods (hybridization) when the lat- 
ter are necessary, the choice of problem-matched alterna- 
tive Green's functions and the selection of appropriate field 
quantities at the boundary between different regions. 
Some of these concepts are applied in this paper to the case 
of a waveguide step discontinuity problem: it is shown that, 
even for this rather well-investigated example, it is possible 
to select alternative Green's functions with improved con- 
vergence properties with respect to those commonly used. 
Moreover, a new canonical representation of the step dis- 
continuity is derived and new original formulations of this 
problem are devised. 

I. INTRODUCTION 

Efficient electromagnetic field computations for complex 
waveguide components are required in various applications, 
especially in order to perform computer-aided optimization 
of the electrical response by suitably adjusting the geo- 
metrical parameters. To attack such problems systemati- 
cally, it is advantageous to parameterize the overall spatial 
domain in terms of interactions between simpler tractable 
subdomains. To this end a general architecture has been 
proposed elsewhere [1], [2], [3], [4], [5] and it is applied here 
to the waveguide step discontinuity problem. 

Step discontinuity problems have received considerable 
attention in the past (see e.g. [6, chap. 5], [7]). Due 
to the separability of the wave equation in the waveguide 
subsections [8], essentially two types of approaches have 
been developed: one based on mode-matching at the step 
discontinuity and the other based on an integral equation 
formulation. 

The latter approach has allowed introduction of basis 
functions which include the edge condition [9], [10] and 
of the admittance matrix formulation [11], [12]. In these 
cases, however, the choice of the pertinent Green's function 
in the waveguide subregions was conventional, correspond- 
ing to an eigenfunction expansion in the transverse direc- 
tion and waves propagating (and reflected) in the longitu- 
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dinal direction. Accordingly, slowly convergent sums were 
obtained for steps with significantly different aspect ratios. 
In this paper we present an alternative Green's function 
expression which overcomes this problem and allows to use 
rapidly convergent sums also for fairly high aspect ratios. 
The theory and numerical results for this case are briefly 
summarized in §111. 

Mode-matching has been previously considered at the 
step itself, i.e. in a region of zero volume; in this case mode 
coupling arises at the step discontinuity and one seeks a 
description of the step discontinuities. It has been found 
that, although severalalternatives are available, a descrip- 
tion of the type employed in [13], [14] is necessary in order 
to obtain accurate results. In this description the indepen- 
dent field quantities are the electric field in the waveguide 
with the smaller cross-section and the magnetic field in the 
waveguide with the larger cross-section. Why this works 
has not been adequately explained so far; it is, however, 
readily understood by considering the canonical equivalent 
network introduced in this paper. Also noted is that, the 
only rigorous full-wave multi-mode frequency-independent 
equivalent circuit published for the step discontinuity [13], 
[14] makes use of controlled sources, while here we intro- 
duce a new canonical network based solely on transformers. 

Finally, it is also illustrated that other novel approaches 
for the analysis of the step discontinuity are available. The 
latter make use of problem-matched Green's functions; in 
this case, the step discontinuity is partitioned into domains 
which can be represented by generalized networks which 
can be described by single term expressions. An example 
of this approach is also illustrated in §V and a discussion 
of the numerical effort for the various approaches described 
in this study is given in the last section. 

II. DOMAIN PARTITIONING 

We start with subdividing our geometry, i.e. the wave- 
guide step discontinuity, into a number of subdomains (see 
Fig. 1) which may be of different types, and which are 
joined together across interfaces. It is apparent that several 
different topological alternatives are available. For illustra- 
tion, we have selected the three different choices shown in 
Fig. 1, namely: 
• a) subdivision into two regions of space: admittance for- 
mulation; 
• b) subdivision into two regions of space with a connection 
network (mode-matching); 
• c) subdivision into three regions of space with a connec- 
tion network (subregion D). 
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a) 

Fig. 1. Three topological alternatives for the step discontinuity seg- 
mentation: in a) is represented a subdivision in two regions of 
space typically used in admittance formulations; in b) is repre- 
sented a subdivision into three different regions {the central one 
being of zero volume, i.e. a connection network) as generally used 
in scattering formulations; finally, in c), a subdivision is shown 
which provide a different network description. In this latter case 
region D is also of zero volume, i.e. a connection network. 

We shall discuss these alternatives separately in the next 
three sections. 

III. USE OF ALTERNATIVE GREEN'S FUNCTIONS 

A.  Theory 

Let us consider the waveguide step discontinuity illus- 
trated in Fig. 2. Essentially, by applying the equivalence 
theorem, we place on the discontinuity section a p.e.c. with 
equivalent magnetic currents; we then evaluate the mag- 
netic field generated on both sides and impose the conti- 
nuity of its tangential components. Typically, a Galerkin 
discretization procedure is adopted and the modes of the 
smaller waveguide are chosen as the basis function set. 
Consequently, most of the numerical effort is devoted to 
computing the elements of the admittance matrix ynp, rep- 
resenting the magnetic field tested by the n-th weighting 
function as generated by the p-th electric field basis func- 
tion. Due to the choice of the modes of the smaller wave- 
guide as test and basis functions, the elements pertaining to 
this waveguide are obtained directly. The computation is, 
however, less trivial for the elements relative to the larger 
waveguide. Usually, in this case, an eigenfunction expan- 
sion in the y direction is chosen, providing the following 
representation of the Green's function 

Gy = IZ, 09m(y)9m{y') 

ffm(y) 

■s(tjmJ<)cos(fc.-„(c-»>)) 
kZTn sin(fc=, 

l?cos(^3,) 

(5)2-(=f)2 

<) 

(1) 

This choice, however^ generates the problem of "relative 
convergence" [15], [16], i.e. the number of terms to be used 
in the Green's function expansion depends on the ratio 
62/61- The larger this aspect ratio, the larger is the number 
of terms to be considered for the Green's function repre- 
sentation. 

The problem of relative convergence can be overcome by 

I 

m 
Fig. 2. Geometry of a E-plane step discontinuity between two rect- 

angular waveguides of width a in the x direction. The computa- 
tional domain lies between the two dotted vertical lines. 

considering an alternative Green's function representation 
which emphasizes wave propagation (and reflection) in the 
y direction and modal expansion in the z direction. In this 
case the Green's function takes the form 

^ cos(kymy<) cos(kyrn (c-y>)) 
G' = E~=o /m(*)/m(*T—^s^^r 

Mz) = v^f cos(=f 2) 
k2 

(2) 

By using these two different Green's function representa- 
tions in the evaluation of the admittance terms, we get the 
following expressions with different convergent properties: 

Yiv = *•*£ 
cos(kzml) 

m=o    ^l     62 kzmsm{kZTnl) 

(-i)n+>>ki    sin2(fcmfci)    (3) 

<*? - ki)(ki -kl) 

k,= <?>'- Vin 

«*m = "<?> 

r-, = **E b, I    (k2-k2    )(k2-k2    ) 
m=0       "' "    v'"n       -ym/V-p 

sm{kymbi)sin(kym(b2 -61)) 

sin(A;j,m&2) 
+ (4) 

cot (ifif- ■kl\ 

V fco ■ kl 

A.l Static part extraction 

In both expression (3) and (4) we need to evaluate the 
sums in order to compute the admittance terms. It is well 
known that, for wide-band evaluation, a different arrange- 
ment of these sums is often convenient. In fact, denoting 
by S one of the above sums evaluated at a certain given fre- 
quency, we can write the generic admittance term, Y, eval- 
uated at a different frequency, as given by Y = S+(D-S): 
here D represents the sum evaluated a the frequency of in- 
terest. It is noted that the elements appearing in the sum 
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Number    of     terms,     m 

Fig. 3. Convergence behavior of the element n = 1, p = 1 of the ad- 
mittance admittance matrix. The waveguide width is a = 19mm 
and m is the number of terms considered in the sum in eq. (3) 
and (4). It is apparent that the usual Green's function, GY, 
converges relatively slowly and with a strong dependence on the 
geometrical ratio &2/&1- On the contrary, the alternative Green's 
function Gz, which emphasize propagation and reflection in the 
y direction and modal expansion in the z direction, converges 
rapidly. 

Number of   terms,   m 

Fig. 4.   As in Fig. 3 but with static-part extraction. 

{D - S) converge very rapidly. This is a well known tech- 
nique, generally applied with S representing a static term 
and D the dynamic contribution. It is noted that this useful 
device can be applied in the evaluation of both expressions 
(3) and (4). 

B.  A numerical example 

As an example, in Fig. 3 we show the convergence behav- 
ior of one element of the admittance matrix with respect to 
m, i.e. with respect to the number of terms used to repre- 
sent the Green's functions in (1) and (2). From the figure 
it is apparent that a significant advantage is obtained when 
considering the proposed alternative representation instead 
of the usual Green's function expression. 

Similarly, in Fig. 4 we illustrate the convergence behavior 
for the same case, but including the static part extraction. 
Clearly, this accelerates the rate of convergence. Thus, 
using this device and the appropriate alternative Green's 
function selection, convergence is achieved with just a few 
terms. 

IV. THE STEP DISCONTINUITY AS A CONNECTION 

NETWORK (MODE-MATCHING) 

This approach is based on the field representation prob- 
lem arising at the step discontinuity [17]. In order to inves- 
tigate this problem it is convenient to refer to the bifurca- 
tion shown in Fig. 5 where three different subdomains are 
joined together. In particular, there is an interface which 
connects subdomain 1 to subdomain 3, and an interface 
connecting subdomain 2 to subdomain 3. In the following, 
for brevity, we assume that the electric (magnetic) fields 
at the interfaces are expanded in terms of suitable basis 
functions and we call by Vi (Ii) the vector containing the 
electric (magnetic) field expansion coefficients relative to 
region i. 

It has been shown elsewhere [18] that the connection net- 
work for this interface can be obtained by taking Vi, V2 
and I3 as independent variables leading to the canonical 
network representation in Fig. 6. The other choice of in- 
dependent variables is Ii.Ij and V3 which leads to the 
canonical network shown in Fig. 7. Both representations 
are equally valid in order to describe the connection net- 
work relative to a bifurcation. 

However, in the case of the step discontinuity, region 1 
is filled by a p.e.a, represented by a short-circuit. Thus 
we need to impose the condition Vt = 0. The equivalent 
network is now the one in Fig. 6 with the ports pertaining 
to region 1 short-circuited. 

It is useful to note that the above canonical network is 
frequency independent, satisfies the Tellegen theorem and 
admits a scattering representation with the following prop- 
erties: symmetry, ST = S, orthogonality, STS = I and 
unitary, i.e. SS* = I, where the f denotes the hermitian 
conjugate matrix, T denotes the transposed and I is the 
identity matrix. 

Also note that the above discussion is valid in general, 
for any choice of basis functions in regions 2 and 3. In 
practice, the most common choice of basis functions is the 
use of the modal eigenfunctions at both sides of the dis- 
continuity; moreover it is common to place the reference 
planes at a certain distance from the discontinuity itself. 
We have therefore a certain number of modes which prop- 
agate from the discontinuity itself to the reference planes 
and are represented by transmission lines; by contrast the 
modes well below cut-off provide a localized contribution 
only at the discontinuity itself and can be represented by 
lumped, frequency-dependent reactances. It is also noted 
that the model proposed in this contribution, similarly to 
the model proposed in [13], [14] can be easily implemented 
in standard circuit simulators. 

V.   A DIFFERENT SEGMENTATION 

The advantage of the segmentation illustrated in Fig. lc 
is that when we use as basis functions the modes for each 
of the regions, the network terms are simple, single-term 
expressions [19]. With reference to the geometry of the 
rectangular resonator shown in Fig. 8 and the correspond- 
ing notation, the admittance matrix element y'J,n relating 
the magnetic, field amplitude of mode m at side i of the 
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Fig. 5.   The bifurcation problem: three regions of space connected at 
an interface. 

Fig. 6.    A canonical network for the bifurcation: with Vi,V2 and 
la chosen as independent field quantities. 

Fig. 7.   A canonical network for the bifurcation: with Ii,l2 and V3 
chosen as independent field quantities. 

Fig. 8.    Geometry of the rectangular resonator for the E-plane step 
segmentation. 

rectangle (» = 1,2,..., 4) to the electric field amplitude of 
mode n at side I (£ = 1, 2,..., 4) is given by the following 
expressions: 

Vrr, 

and . = 4b?- k , while 0m where fc   = (5)   + (T?) 
is the Kronecker delta. 

Therefore, in this case, the network computation is triv- 
ial and the problem is completely reduced to that of the in- 
terconnection of different networks. Again, it is worthwhile 
to note that this problem can be advantageously solved by 
using standard circuit simulators. The actual advantage in 
using this method is closely related to the type of geometry 
under consideration. 

VI. RESULTS AND DISCUSSION 

The topological alternatives described in the previous 
sections provide different generalized networks and some 
new physical insights for the step discontinuity problem. 
The techniques applied are well-suited to step discontinuity 
characterization for particular geometric aspect ratios. In 
§III-B we have already noticed that the alternative Gfeen's 
function representation, which makes use of wave propaga- 
tion along y, is particularly well convenient for the case of 
pronounced steps. 

Naturally, the different approaches yield the same nu- 
merical result. As an example we have analyzed a step 
discontinuity via the three different topological segmenta- 
tions and plotted the relative results in Fig. 9 for different 
aspect ratios. 

The numerical expenditure associated with the various 
approaches is. on the other hand, quite different and a com- 
plete numerical analysis of the peculiar advantages and dis- 
advantages is beyond the scope of this presentation. De- 
pending on the problem geometry one approach can be 
more effective than the others. Moreover, although we have 
focused here on the example of a single step discontinuity, 
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Fig. 9. A comparison of the electrical response of the step discontinu- 
ity for different values of spatial resolutions; the latter is defined 
as the height of the smaller waveguide divided by the number of 
basis functions used in order to represent the field on this domain. 
All three aproaches yield the same result. 

the application to more complex geometries, as often re- 
quired in practice, may significantly take advantage of the 
enlarged arsenal of options introduced. 

VII. CONCLUSIONS 

We have introduced elsewhere an architecture for field 
representation, computation and hybridization when deal- 
ing with complex problems. By applying some of the 
concepts developed for this general architecture we have 
found some new results also for fairly well-known problem 
such as the step discontinuity. 

In particular, we have found that the systematic use of 
alternative Green's functions can significantly improve the 
convergence properties of modal sums. We have also found 
a canonical network representation for the step disconti- 
nuity and a different topological partitioning. Each of the 
proposed approaches has peculiar advantages and disad- 
vantages that, depending on the considered geometry and 
the particular feature under investigation, suggest their use 
for various scenarios. 
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1.0 INTRODUCTION 
Determining radiation or scattering patterns is usually accomplished by integrating the source distribution on an object 
or the tangential fields these sources produce over some enclosing surface, or from summing a modal expansion on 
such a surface. For objects not too large relative to the wavelength, these needed far-field evaluations do not require 
an excessive amount of computation. However, an object's surface area in square wavelengths, A, increases with 
frequency, f, as f2, and past some threshold the number of far-field observation angles neededto adequately define 
the radiation pattern may come to drive the total computation cost. For antenna problems modeled using a physical- 
optics current approximation, for example, only one current computation is needed whose cost is proportional to f2, 
which is also the cost of each far-field sample. For scattering problems solved using so-called last" techniques 

whose current-computation cost ranges between f2 and f4 per incidence angle, the total cost to obtain the aspect- 
dependent RCS can be directly proportional to the number of incidence angles required. Thus, as problem size 
increases, the overall computation cost eventually may become proportional to the number of observation angles at 
which the radiation or scattering pattern is needed. 

Reliably determining the far-field pattern for large objects, i.e., not missing important details of the pattern with 
respect to lobe maxima and null locations, can require 10 or more samples per lobe if only simple interpolation is used 
to approximate the pattern behavior between the samples. It would be useful were an alternate procedure available 
whereby the number of samples is reduced to some minimum determined by the pattern features themselves and 
which provides a continuous estimate of the pattern based on electromagnetic physics. One such procedure for 
accomplishing this objective is discussed here, based on a general technique called Model-Based Parameter 
Estimation (MBPE) [Miller]. 

MBPE involves a model, preferably physically based and called here a fitting model (FM), whose coefficients, or 
parameters, are estimated by matching the FM to samples of the process or data to be estimated, here called the 
generating model (GM). In electromagnetics, two prominent FMs having wide applicability, and related by the Laplace 
transform, are exponential series and pole series. The former is most obviously related to transient waveforms and 
the latter to frequency spectra, for which reason we referto exponential-series as being waveform-domain FMs and 
pole-series as spectral-domain FMs. 

Note that MBPE encompasses as special cases some classical numerical procedures. For example, Prony's 
Method was the first devetopedfor handling waveform or transient responses and Pade Approximation can be recog- 
nized as being applicable to frequency or spectral responses. 

2.0 BACKGROUND 
The possibility of using an MBPE procedure for constructing far-field radiation patterns has been explored elsewhere 
[Bucci et al. (1991), Roberts and McNamara (1994)]. Bucci et al. developed a signal-processing-like procedure based 
on the spatial bandwidth of the field to establish the minimum number of pattern samples need to develop a radiation 
pattern. Roberts and McNamara applied Prony's method to angle windows to develop a radiation-pattern estimate 
from a sequence of discrete-source approximations (DSAs). We extend these basic ideas here by developing an 
adaptive procedure for far-field pattern estimation called WASPE (Windowed Adaptive Sampling Pattern Estimation), 
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applicable to both radiation and scattering problems, that permits the pattern to be reconstructed to a prescribed 
uncertainty. 

WASPE begins with sparsely sampled far field values from a GM at a pre-specified set of observation angles which 
are used to set up an initial sequence of FMs, each of which shares two or more GM samples in their region of over- 
lap as is illustrated conceptually in Fig. 1. Each new GM-sample angle is then selected where the maximum mis- 
match of all pairs of overlapping pairs of FMs occurs as determined by computing more finely sampled FM values and 
then increasing the order of the FMs whose angle windows include that sample. The process of comparing FM val- 
ues continues until the maximum mismatch falls below some prescribed uncertainty. The approach is essentially 
equivalentto the adaptive method developed by Miller (1996) for estimatinga frequency transfer function, but for 
which the FM was a pole series rather than the exponential series used here. 

The performance of WASPE is dependent, among other things, on the kind of FM usedforits implementation. One 
approach is provided by Prony's Method, where an appropriate FM is given by 

w 

t(6)=XRaexPfikdacos(e)] 
a=1 

(1) 

with the W point sources of strengths Ra and located at positions da along the x-axis from which the observation 

angle 6 is measured. By sampling the GM far field in uniform steps of 6, Prony's Method can be used to estimate 
Ra and da and thereby obtain a FM that provides a continuous estimate of the pattern between the GM samples 
[Miller and Lager (1978), Miller and Goodman (1983a), Miller and Lager (1983b)]. 

Strictly speaking, when used in this fashion Prony's Method is only applicable to linear arrays. Furthermore, if the 
number of actual sources.S, and/or their effective aperture size in wavelengths, A, is too large, the matrix needing 
solution can become very ill-conditioned. Thus, it's logical to window the pattern so that its effective rank is main- 
tained below some threshold. This means that in contrast to the situation where an actual source distribution can be 
"imaged"from its complete pattern, when using windowed data an equivalent DSA valid over only the window used 
for its computation will result. Since the goalforthe our application is not to image the source distribution but rather 
to compute the pattern more efficiently, nothavingthe actual distribution is nota disadvantage. Also note that were 
this done for a scattering pattern, whose source distribution depends on the angle of incidence, no single DSA can 
describe the backscatter pattern in any case. An alternative to Prony's Method is to instead assign the DSA source 
locations and use the GM samples to compute the source amplitudes. This has the advantage that the GM samples 
may be arbitrarily located in angle, thereby making an adaptive procedure more practical. Also, only half the samples 
are needed for a given value of W since the source locations are no longer unknowns. 

Using this alternative requires some rationale' for assigning the source locations, or equivalent^, specifying an appro- 
priate FM. Since the highest-angular-frequency component of the pattern is proportional to kA, one possibility is to 
use as the FM over angle window m 

N -N 

f(9) =2,Rmnexp[ikncos(9)]+ X Rmnexp[ikncos(e)] 
n = S n = -S' (2) 

where N = int(A + 1) and 2N - S - S' = F with F the total number of exponential terms used for the m'th FM, int(X) 
denotesthe valueof X rounded off to the nearest lower integer and IS -S'l <1. Also needed to "initialize" the FM 
selection is choosinga starting value for F, and the number of FMs, M. Somewhat arbitrarily, we choosea small 
value for F of 3 or 4, with M determined by the number of anticipated lobes in the pattern being processed and the 
amount of overlap chosen for the adjacent FMs. 
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A candidate pattern on which to test the WASPE is the back-scattered field of a finite-length circular cylinder for 
which and angle-dependent approximation is given by [Knott et al. (1993)] 

sin[2jiAsin(ej)] 
E(6) ~ cos(6i)    „  .  .  ■-  ' 

"    2jtAsin(6j) (3) 

and which is plotted in Fig. 1 for A = 10 over an incidence-angle range of 0 to jt/2. If each FM is intendedon aver- 
age to include two lobes of the scattering pattern, then ~A = 10 angular windows would be required to cover this 
range of incidence angles. Using a total overlap between adjacent FMs of 2/3, then M - 16 FMs would be needed. 
As each new G M sample is added, the FMs that include it are increased in rank by alternately increasing S and S' by 
one, until a maximum mismatch, MM, between all pairs of overlapping FMs of 

MM;j(e) = max[IFMi(9) - FMj(e)l/(IFMj(6>l + IFMj(G)l)] < 10"x (4) 

is achieved, i.e., an X-digit match is obtained between them. It's also possible to scale X, e.g. so that it depends en 
the relative magnitude of the FMs being tested relative to the maximum value in the pattern, to thereby allocate the 
final uncertainty in the estimated pattern according to problem requirements. Note that the FM itself may represent 
the complex far field or its magnitude. 

FM1 ^ ^ FM3 w ^ FM5 w m FM7 
FM2 ^ ^FM4 ^ ^FM6 

Figure 1. Conceptual illustration of one possible sequence of overlapping, windowed FMs to model a radiation or scatter- 
ing pattern. The maximum mismatch between all of the pairs of FMs is used to determine where the next GM pattern 

sample is placed, with the process continuing until a prescribed uncertainty in the estimated pattern is achieved. 

3.0 NUMERICAL EXAMPLES 
An example using WASPE for a 3-wavelength sinusoidal filamentary current is shown in Fig. 2. Thenumberof FMs 
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used here is 5, arranged as shown by the horizontal lines at the top of the figure. The 12 GM samples initially used 
and the 6 samples added duringthe adaptation process satisfied a maximum mismatch criterion of 0.01. Both the 
final FM estimates are plotted here as well as the finely sampled GM pattern, and are nearly indistinguishable. 

10- 

0.0 0.2 1.4 1.6 0.4        0.6        0.8        1.0        1.2 
OBSERVATION ANGLE (Radians) 

Figure 2. Use of WASPE for the radiation pattern of a 3-wavelength sinusoidal current filament is illustrated here, with the 
horizontal lines on top showing the angle ranges spanned by the five FMs used. The initial GM samples are shown by 
open circles with the solid circles showing where the adaptively added samples are located, using a maximum estimation 

uncertainty of 0.01. 

The resuftof using WASPE on the pattern of Fig. 1 isshownin Fig. 3. The 16 overlapping FMs used here superim- 
pose to graphical resolution and agree to within two digits of accuracy independent of the actual field level. The con- 
verged pattern estimate employs a total of 56 GM samples, or about 2.8 per pattern lobe. The distribution of GM 
samples for the cylinder problem is shown in Fig. 4. The initial 32 samples are distributed uniformly in angle, while 
the next 24 are added as determined by the maximum mismatch between the overlapping FMs. It can be seen that 
the adaptively added samples are concentrated towards broadside incidence, a result that's consistent with the cbser 
spacing of scattered-field maxima in that region. Whereasthe example presented in Fig. 2 employed FMs overlap- 
ping to both ends of the observation-angle range, that is not the case here, which explains why no additional GM 
samples are located at either end. 

4.0 DISCUSSION 
Note that two different approaches to estimating a far-field pattern using MBPE have been mentioned above, both 
leading to DSAs. The first attempts to model the actual source distribution, i.e., determine the source locations, 
using Prony's Method. The second, and the one from which the numerical results presented here were derived, 
instead uses angle windows and models the field, rather than the source distribution. If we wanted to solve an 
inverse problem, the first would be appropriate, but if needing only to estimate the pattern, the second is the better 
choice. 

Second, radiation and scattering applications present intrinsically different problems. A radiation pattern is determined 
from one source distribution, whereas the backscatter radar cross section comes from a new source distribution for 
each incidence angle. Thus, if needing to estimate a scattering pattern, it seems preferable to model only the pattern 
and to avoid the need to estimate source locations as well. 
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Figure 3. Example of using WASPE for estimating the back-scatter pattern of a circular cylinder 10-wavelengths long. 
The 32 initial GM samples are shown by the squares while the 24 adaptively added samples are shown by the circles. The 

prescribed estimation uncertainty used here was 0.01. 

2- 

co 
c 
.2 
CO 

SE.1 

o z 
< 

INITIAL GM SAMPLES 
ADAPTIVELY ADDED GM SAMPLES 

o 
o° 

o 

o-to- 
0 10 

I 
30 50 60 20 30 40 

GM SAMPLE NUMBER 
Figure 4. Location in angle of the GM pattern samples is uniform for the set used for the initial FM computation, but 
thereafter varies widely according to the maximum mismatch error found between overlapping FMs. it's interesting to 
observe that the number of added GM samples increases from end-on to broadside incidence angles, due to the finer lobe 
structure that occurs near broadside a can be seen in Fig. 3. 
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S.0 CONCLUDING COMMENTS 
The feasibility of minimizing the number of samples needed to reconstruct a radiation or scattering pattern using 
Windowed Adaptive Sampling Pattern Estimation (WASPE) based on model-based parameter estimation has been 
demonstrated. While useful for radiation-pattern analysis, WASPE should offer even more to improving the efficiency 
of computing the scattering patterns of large objects. 

Although promising, several possibilities for improving the performance of WASPE. One is to v 
window width with the anticipated lobe spacing or the number of terms used in the initial FMs. A 
maintain the rank of a FM below some level and to split that FM into two if more samples than tf 
its window. A third would be to vary the mismatch specification with the pattern level or other 
that sampling is driven by problem requirements. Finally, use of other FMs should be explored. 
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Abstract: Model-Based Parameter Estimation (MBPE) techniques that use a rational function fitting 
model with complex coefficients have been shown to yield approximations which accurately describe the 
frequency dependence of antenna characteristics such as input impedance or admittance. In this paper we 
apply MPBE to the radiated electric field of a 0.5m dipole and use the rational function fitting model to 
interpolate the electric field spectrum of this antenna over the interval 150 to 950 MHz. A method is 
presented for using these electric field interpolations in conjunction with the associated impedance 
interpolations in order to reconstruct gain patterns at any frequency within this model range. Conventional 
Pade approximations require a matrix inversion operation in order to estimate the parameters of the rational 
function fitting model. In this paper we introduce a Genetic Algorithm (GA) approach for obtaining the 
required fitting model parameters. This new approach to MBPE has the advantages that it is very general 
and avoids the need for any kind of matrix inversion. 

1. Introduction 
The High Fidelity Analysis Module (HFAM) currently undergoing development at the Applied Research 
Laboratory, The Pennsylvania State University (ARL/PSU), will provide, for the first time, a highly-capable 
and flexible analysis tool for the modeling and analysis of composite (antenna, platform, terrain) 
electromagnetic radiation patterns. These models and patterns will potentially be of great value to a wide 
range of users with different data fidelity (space and frequency) requirements. For instance, the user 
involved in military Test and Evaluation (T&E) typically requires high-fidelity representations of 
antenna/platform/terrain interactions in order to simulate or assess the performance of a system or systems 
in various geometric configurations and at various frequencies. This particular military user may also be 
interested in evaluating different antenna/platform or antenna/terrain configurations at various frequencies. 

The storage of high-fidelity antenna radiation pattern data imposes significant burdens upon storage media 
infrastructure. This burden is felt most heavily by the military forward-deployed tactical user/analyst who is 
typically seriously constrained by on-site computer storage resources. To illustrate the fundamental 
problem, one high-fidelity antenna radiation pattern sampled and stored (without compression) in one- 
degree increments of azimuth and elevation requires approximately 64,000 data points. Many radiation 
patterns are more often than not required to support the myriad of special cases required to fully support 
mission needs. Experience has shown that these data storage requirements will likely increase with time. 
Clearly a scheme whereby high-fidelity radiation pattern data can be stored, compressed and then 
regenerated at differing levels of fidelity in space and frequency (with a mechanism for explicitly describing 
fidelity/error tradeoffs) is highly desirable. This paper addresses a subset of these requirements by 
providing a means for reducing the amount of data required to represent an antenna's performance over its 
operational frequency range thereby realizing significant reductions in data storage requirements. 
Additional work relating to data compression and error metrics is ongoing and will be discussed in a future 
paper. 

2. Theory 
Model-Based Parameter Estimation (MBPE) is a form of "smart" curve fitting because it uses a fitting 
model which is based on the problem physics [1-3] as opposed to standard curve fitting techniques, which 
do not make use of the problem physics and consequently tend to be much less efficient.   The "model- 
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based" part of MBPE involves using low-order analytical formulas as fitting models, while the "parameter 
estimation" part refers to the process of numerically obtaining coefficients for the fitting model by matching 
it or fitting it to sampled values (either calculated or measured). One form of a fitting model which is 
commonly employed in MBPE is represented by the following rational function [1-3]: 

N(s) _       N0+N,s+N2s
2+ - +Nns" 

D(s)     D0 + D,s+D2s
2+ ■■■ +Dd. 

The standard approach to solving for the n+d+1 unknown complex coefficients in (1) is to first sample the 
data set which is being interpolated at n+d+1 frequencies [1-3]. The n+d+1 equations which result may 
then be written in matrix form and subsequently inverted to solve for the required coefficients [2]. In this 
case we have a square matrix and only as many fitting points as there are unknown coefficients are required 
to find the solution, however this procedure can easily be extended to perform interpolation on an over- 
sampled data set via a least-squares approach. When applying this technique to the interpolation of antenna 
radiation patterns, the function F(s) represents the complex far-zone radiated electric field at a particular 

value of 6 and <p, and the argument s represents the complex frequency jto at which the antenna is operated. 
Hence, this technique may be applied repeatedly over different values of 6 and <p in order to obtain an 
approximation for the antenna radiation pattern at any frequency within the predetermined range of the 
fitting model. 

The gain of an antenna may be expressed in the form [4] 

0(M = ^ (2) 
"in 

where 

^=|Re{vj„/*} = i|/i„|2Ä,,1      and        U(6,<p) = ^-(\Eg\2+\E9f^ (3) 

which represent the input power accepted by the antenna and the antenna radiation intensity, respectively. 
A technique for interpolating the input impedance of an antenna via Pade approximations has been 
demonstrated previously by Miller [1-3]. A similar technique may be employed using Pade approximations 
to estimate the input impedance Z,n -R^ +>Xi( required in order to calculate the input power Pin of a 
particular antenna as a function of frequency. 

GAs have been used for solving a wide variety of engineering electromagnetics problems [5,6], Here we 
demonstrate a GA approach to MBPE which is very general and eliminates the need for any type of matrix 
inversion operation. A GA optimization procedure using real value encoding has been adapted for use in 
this application [7]. In this case, the objective function f(P) to be maximized is 

f(P) = -fJ\F(si)-FP(4
2 (4) 

where F(sf) represents the sample values for electric field versus frequency as determined by the Numerical 

Electromagnetics Code (NEC), Ff(s,) is the approximated value of the field determined by the 

evolutionary process of the GA, Nf is equal to the total number of frequency fitting points, and P is the 

population" index number or the member of the current population to which the fitness f(P) is to be 

assigned. The parameters which comprise the chromosomes of the GA are the coefficients [No''"'Af«] and 

[DQ.-'-.D,,.]] of equation (1), and so FP(st) is simply the rational function (1) with the approximated 
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chromosomes as its coefficients. When f(P) is maximized (in this case that means as close to zero as 

possible) then we say that the GA has found an optimal fit to the data set /"($,) for j = 1, 2, ••• , Nf. 

3. Results 

MBPE using matrix inversion is applied to a radiation pattern slice (0° < 6 < 180°) of a 0.5m dipole test 

case over a frequency interval from 150 to 950 MHz. Figure 1 shows a sequence of frequency spectra 
which have been interpolated via MBPE using only six fitting frequencies for each specified value of the 
angle 0 (i.e., 6=10°, 30°, 50°, 70° and 90°). It is clear from these plots that this method for interpolation is 
quite powerful and can be used to achieve significant model-order reduction, which is especially attractive 
for problems with large computational domains. By interpolating the frequency response at a reasonable 
resolution (2° in this case) and storing the six coefficients for each point, a slice of the radiation pattern at 
any frequency between 150 and 950 MHz can be reproduced quickly and accurately. The input impedance 
interpolations shown in Figure 2 can then be used to convert the interpolated electric field patterns into gain 
patterns using (2) and (3). Examples of these gain plots at four different frequencies are shown in Figures 3 
and 4. 

The GA form of MBPE is applied over a shorter frequency interval (150-450 MHz) which requires only 
three fitting frequencies. In this case there are two unknown numerator coefficients and one unknown 
denominator coefficient. Figure 5 shows the matrix-inverted interpolation with the fitting frequencies 
denoted by circles, while Figure 6 shows the GA interpolation which used the same three frequencies (250, 
300, and 350 MHz). The two interpolations are virtually identical and the comparison demonstrates the 
usefulness of GAs in this type of application. 

4. Conclusions 
A MBPE technique has been introduced in this paper which can be used to accurately estimate not only the 
input impedance, but also the radiation pattern of an antenna at any frequency within the operational range 
of the fitting-model. This technique has the advantage of providing a method for efficiently generating and 
storing model parameters for problems with large computational domains. A genetic algorithm technique 
for performing MBPE has also been introduced which produces fits that are virtually identical to the matrix 
inversion technique. 
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(b) f=500MHz 

Figure 3: NEC vs. Pade gain plots at (a) 300 MHz and (b) 500 MHz 
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(b) f=933MHz 

Figure 4: NEC vs. Pade gain plots at (a) 720 MHz and (b) 933 MHz 
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Abstract 

Based on the (m, JV, g)-regular Fourier matrix, a new algorithm is proposed for fast Fourier transform 

of nonuniform (unequally spaced) data. Numerical results show that the accuracy of this algorithm is much 

better than previously reported results with the same computation complexity of 0(JVlog2 JV). Numerical 

examples are shown for the applications in computational electromagnetics. 

I. Introduction 

Fast Fourier transform (FFT) has been enjoying widespread applications in numerical analysis and other 

areas of applied mathematics since Cooley and Tukey [1] established, in the 1960s, a powerful fast algorithm 

for calculating discrete Fourier transforms. The requirement for using FFT algorithms is that the input 

data must be equally spaced. In many practical situations, however, the input data is nonuniform (i.e., not 

equally spaced), and hence the regular FFT does not apply. To overcome this difficulty Dutt and Rokhlin 

[2] and Beylkin [3] studied the problem of FFT for nonuniform (unequally spaced) data. 

We propose a new approach to achieve the fast Fourier transform for nonuniform data by using a new 

class of matrices, the regular Fourier matrices [4]. This algorithm, also with a complexity of 0(N log2 JV) 

where JV is the number of data points, is more accurate than that proposed in [2] because our approximation 

error is minimized in the least-square sense. 

One of the important applications of this NUFFT algorithm is to enhance the newly developed pseu- 

dospectral time-domain (PSTD) method [5], which requires only two cells per minimum wavelength, with 

the capability of having a nonuniform grid. 

II. Formulation 

Our aim is to develop a fast algorithm to find the following summation [2]: 

fj = F(a)j = J2 <*keiu,kt>    for   j = -N/2,■ ■ ■,JV/2- 1, (1) 
*=o 

where u> = {uo, •• ■ ,U>N-I} and t = {t_j\r/2i-'-,'jv/2-i} are finite sequences of real numbers, with w* € 

[-N/2,N/2 --1] for k = 0,---,JV - 1 and t,- = 2wj/N € [-TT.TT] for j = -N/2, ■ ■ ■, JV/2 - 1; a = 

{c-o, • • ■, ON-I} and / = {/_jv/2, • •' > /w/2-1} are finite sequences of complex numbers. Note that, unlike 

the regular FFT, ojt's are nonuniform (i.e., unequally spaced). 
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The idea of Dutt and Rokhlin [2] for solving this problem by a regular FFT is to approximate a function 

F : [-7T, ?r] -> C of the form: 

F{x)=e~bx eicx    for   x e [-TT.X], (2) 

where b > 1/2 and c is a real number, by a small number of equally spaced points on the unit circle. 

We recognize that, in applications, the function F defined by (2) takes its values on a finite set only. 

Therefore, instead of (2), we can consider the following finite sequence 

F(j) = Sie
i2"c^N   for   j = -AT/2,---,N/2- 1, (3) 

where Sj > 0 (called "accuracy factors") are chosen to minimize the approximation error. The novelty of this 

algorithm is that its approximation is optimal in the least-square sense, which leads to much more accurate 

results. 

A. The regular Fourier matrices 

For an integer m > 2 let w = e
a*'mN, q be an even positive integer, Sj (j = -N/2, ■ • •, N/2 - 1) be 

positive numbers, and c be a real number. Our aim is to find it_,/2 (k = 0, • ■ • ,q) to satisfy the following 

condition: 
[mc]+?/2 

Sjw
jmc=      Y,      **-[mc](<V*    for every   j = -N/2,---,N/2 -1, (4) 

k—[mc]~q/2 

where [mc] denotes the integer nearest to mc. Defining matrices and vectors 

A = 

0(-f+mmc]-q/2)     w(-Ä+i)([mc]_,/2+1) 

w{%-mmc}-q/2)        ^(f-Damcl-,/2+1) 

m-f([mc]+,/2) 
wi-f+mmc]+q/2) 

,,(£-l)(M+,/2) 

(5) 

we obtain the equation: 

v(c): 

s_JV/2+1t1;<-f+1>™ 

so 

Ax(c) = v(c). 

(6) 

(7) 

Observe that (7) is a system of N linear equations with (q + 1) unknowns. Since in our applications 

q «N, equation (7) cannot be expected to have an exact solution. However we can find the least squares 

solution of the inconsistent system (7). That is to find x{c) such that \\Ax(c) - v(c)\\ is smallest possible: 

x(c) = F^alc), (8) 
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where 

a(c) = 4f(c)-v(c), 

N u>~ 
l-i» 

iV 
F(m,N,q) = l-i»-' 

wl"/'-w-l"/2 «i',_ l)~/2_',„-(«-l><»/2 

-lN/1        ,N/2 

TV 

(9) 

(10) 

where j4f denotes the complex conjugate transpose of A matrix. Observe that, while A, and hence J4
T
, 

depends on c, the product matrix F(m, N, q) = A*A is independent of c and is uniquely determined by m, N 
and q. This remarkable property of A is of great importance because it will reduce the number of operations 
by our algorithms and is a crucial point of this work. The matrix F(m,N,q), for m,N,q € N, called the 

(m, N, q)-regular Fourier matrix, is a Hermitian matrix of dimension (q + 1) x (q + 1). The elements of a(c) 

are given by 
N/2-l 

ak(c)=    Y,   Sje^«""^»/2-*«, (11) 
j=-N/2 

where {mc} = mc — [mc], and k = 0, • • •, q. 

B. The NUFFT Algorithm 

We may choose two different accuracy factors, namely (i) the Gaussian Sj = e-6''7^ and (ii) the cosine 

Sj = cos -fij^ accuracy factors. In particular, for the cosine accuracy factor, a closed-form solution can be 

found for (11): 

T=-l,l 

This solution saves many arithmetic operations. Unfortunately, we are not able to find a corresponding 
closed-form solution for the Gaussian accuracy factors. Because of this, it is only sensible to use the Gaussian 
accuracy factors when many repeated NUFFTs are required for the same ut points, since then one can pre- 
compute (8) for all the subsequent NUFFTs. 

In summary, our NUFFT algorithm consists of following steps: 
(1) Compute Xj{uk) by (8) for j - 0, • ■ ■,q and k = 0, • • •, N - 1. 

(2) Calculate Fourier coefficients 

r, =        ]T       an ■ Xj{wk). 
j,k,[muk]+j=l 

(3) Use uniform FFT to evaluate 
mW/2-1 

Tj=     J2     n ■ e2nik'lmN. 
k=-mN/2 

(4) Scale the values to arrive at the approximated NUFFT 
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The asymptotic number of arithmetic operations of this algorithm is 0{mN log2 JV), where m <S. N. 

Usually we choose m = 2 and g = 8. 

III. Numerical Results 

We first compare (i) Dutt-Rokhlin's algorithm, and our algorithm with (ii) Gaussian and (iii) cosine 
accuracy factors for different values of JV. For this comparison, we use m = 2 and q = 8. The computation 

was done with Matlab on a SUN Ultra 1 Workstation. We compute the errors for equation (1) by the 

formulae defined in [2]: 
N-\ 

£i» = oS?J'>"/*l/£|a'1 
3=0 

and 

fj/2 = , £i£-.frP/X>P- 
\ 3=0 3=0 

Figure 1 shows the error E2 and Ex of the three algorithms for N = 64, 128, 256, 512, 1024, 2048, 
and 4096. Both uij and a,- are given by pseudo-random number generators. It is observed that overall the 

errors of the our algorithm with Gaussian and cosine accuracy factors are respectively about 8 and 12 times 
smaller than Dutt-Rokhlin's algorithm for Eoa, and 16 and 19 times smaller for £2- 

Figure 2 displays the errors E2 and E^ as functions of q for JV = 64. It is seen that for 2 < q < 12, on 
average, our algorithm is 45 times (for cosine accuracy factors) or 24 times (for Gaussian accuracy factor) 

more accurate than the algorithm in [2]. This conclusion is independent of JV. 
We apply this NUFFT algorithm to perform spectral analysis of electromagnetic waves near sharp 

medium discontinuities. Shown in Figure 3(a) is the transverse electric field due to a transient plane wave 

normally incident to a thin conductive dielectric slab of 15 cm thick. The slab has er = 4 and a = 1 

S/m, and the background is vacuum. The center frequency of the transient incident wave is 166.7 MHz 

(a Blackman-Harris window time function). In terms of the center frequency, the slab is only 1/12 of 

the wavelength in vacuum. The fast spatial variation of the field (obtained by the FDTD method with 

a very fine grid) is depicted in Figure 3(a) near the slab. As shown in the figure, in order to effectively 
describe the field variation, a fine sampling is used near the slab, while a much coarser sampling is used 

away from the slab where the field has a slow variation. Figures 3(b) and 3(c) show the excellent agreement 

of the real and imaginary parts of the (spatial) spectrum obtained by the NUFFT (with cosine accuracy 

factors and q = 8, m = 2) and direct evaluation. Figure 3(d) displays the absolute error from our NUFFT 

algorithm and that from [2]. Quantitatively, the L2 and £«, errors defined in [2] are E2 = 2.731 x 10~6 and 

£00 = 2.956 x 10-6 for our algorithm, and E2 = 3.849 x 10~5 and Ex = 3.694 x 10~5 for the algorithm in 
[2]. Our NUFFT algorithm is more than one order of magnitude more accurate. This algorithm will benefit 

the development of a nonuniform pseudospectral time-domain (PSTD) method for Maxwell's equations [5]. 
Figure 4 shows the CPU time as a function of JV in the NUFFT algorithm. Both the input data at and 

its locations u* (k = 0, • • •, JV -1) are obtained by a pseudo-random number generator with large variations. 

It clearly verifies that the algorithm is of complexity 0(N log2 JV). 
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IV. Conclusions 

Based on a class of regular Fourier matrices, a new nonuniform fast Fourier transform (NUFFT) algo- 

rithm is developed for unequally spaced data. With a comparable complexity of 0(N log2 N), this algorithm 

is much more accurate than previously reported results since it is optimal in the least squares sense. The 
algorithm is useful for computational electromagnetics and other fields of applied mathematics. 
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ABSTRACT 

The number of basis functions needed for sufficient accuracy and convergence of a moment method scattering 
solution is often much more than the number of degrees of freedom required to reconstruct the scattering pat- 
tern, especially when the desired pattern is limited to a small angular sector. In this paper, we describe a tech- 
nique by which the computational complexity of the scattering solution can be significantly reduced by 
projecting the impedance matrix onto a subspace that spans a limited prediction angle sector. In addition to 
the derivation of the technique, we also include some comments on the application of this technique, espe- 
cially to iterative problems, and note the relationship between this technique and the MEI approach to solving 
finite element problems. 

1.0 INTRODUCTION 

Typical applications of moment method (MM) solutions for scattering require basis function sampling densi- 
ties of about ten samples per wavelength to achieve adequate accuracy and convergence. However, the degrees 
of freedom required to accurately reconstruct the scattered field over limited angles may be much smaller than 
the number of basis functions. In this paper, we will describe a technique by which the computations required 
for an accurate MM prediction can be significantly reduced by limiting the size of the matrix inverse to be the 
size of the subspace spanned by the sector of predictions rather than the number of basis functions. Further- 
more, we will show how this technique is closely related to the measured equation of invariance (MEI) 
approach [1] which has been applied to finite element problems. 

In Section 2, we will describe the subspace technique for MM scattering predictions. In Section 3, we will dis- 
cuss some practical issues and the relationship between the subspace approach and MEI. In Section 4, we will 
describe the computational advantages of the subspace approach, and in Section 5, we will summarize the 
approach. 

Lower case characters will be used to represent scalars (normal) or vectors (bold), and upper case bold charac- 
ters will be used to represent matrices. 

2.0 SUBSPACE APPROACH 

A scattering prediction based on a moment method solution can be formulated as a bilinear equation [3] 

ZV   N 

«(r-O^X^Oi/r)^, (Eql) 
'   j 

where s is the measured scattering value, t and r represent the transmitter and receive geometries (e.g., polar- 
ization, angle) for the radar respectively, at describes the coupling of the transmitter to the ith basis function, 
bj describes the coupling of the receiver to the jth basis function, and the admittance elements, y^ describe the 
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coupling between the ith and jth basis function due to the target geometry. The elements of the admittance 
matrix are computed by taking the inverse of the impedance matrix. 

If we separate the sums, the first sum represents the computation of currents, j, due to the radar transmitter, 

N 

JiW = 5>/0)V CBq2> 
i 

and the second sum represents the propagation of those currents to the radar receiver, i.e., 

AT 

s(r,t) = Jjbi(r)ji(t). (Eq3) 
i 

Note that if we know the currents, there is no need to invert the impedance matrix. Therefore, applications 
where the technique is useful are (1) where currents must be computed many times for iterative computations, 
and (2) where we can get away with pseudo-currents that are much simpler to compute yet span the prediction 
subspace. These applications will be explored further in Section 3. 

The sum in Eq 2 can be written as a matrix-vector product, and furthermore, if there are several scattering 
geometries of interest, then the corresponding currents can be represented by the matrix product 

/ =  YA, (Eq4) 

where the columns of/represent the currents, and the columns of A represent the corresponding excitations, 
i.e., transmitter geometries. We assume that Y is full rank, and / and A are full column rank but not full row 

rank, i.e., there are a limited sector of angles for which we will compute scattering predictions. Since Y = Z , 
we can multiply both sides of Eq 4 by Z to get 

ZJ = A. (Eq5) 

This equation represents a projection of Z onto a subspace spanned by the columns of J. Therefore, we can 
find another matrix, Za, such that. 

ZaJa = A, (Eq6) 

where Za is full column rank and Ja is derived from J. The matrix, Ja, can simply be a subset of the rows of 7 
or linear combinations of the rows of 7 based on averages, wavelet decompositions, geometric partitioning, or 
other nonlinear combinations that span the prediction subspace. We will discuss the choice of rows for Ja in 

Section 3. 

If we treat Ja as known quantities based on 7 as described above, then we can treat each row of Za as 
unknowns which are to be solved for each corresponding row of A. Since Ja is full column rank, the solution 

for Za that satisfies Eq 6 is given by 

Za = ZJ(J+), (Eq7) 

where superscript + represents the pseudo-inverse [2, pl39], i.e., (7£)7a = I, where / is the identity 

matrix. Given Za which is full column rank, we can now solve for 7« given the excitation, A, from 

980 



Z£A  = /„. (Eq8) 

The final step is to find a way to compute the scattered field from Ja. If we begin by assuming that we must be 
able to solve for the scattering at all receiver geometries from all currents, then we can start with 

BTJ = S, (Eq9) 

where superscript T denotes transpose, B is full column rank, J is full column rank as before, and S is the 
bistatic scattering matrix whose rows represent receiver geometries and whose columns represent transmitter 
geometries. We need to find a matrix, Ba that when multiplied by /a, results in the same S. By the same 
approach as before, we find that 

Bl = BTJU+a). (EqlO) 

Now we can put the equation back together for a single scattered field computation. 

s = bTJ(J+)[ZJ(J+)]+a. (Eqll) 

We note that we have essentially defined a projection operator, 

based on the currents, which reduces the rank of the impedance matrix to the size of the subspace spanned by 
the limited angle sector of the scattered field. 

3.0 APPLICATIONS 

As noted before, if we need the currents in order to construct the projection operator in Eq 12, then why 
bother? In the first place, there are many optimization problems for which the scattered field is computed 
many times for small perturbations in the target or radar geometries. For these problems, the computations 
associated with a single computation of currents may be insignificant compared to the many iterations that 
follow. In such cases, we are guaranteed a matrix of currents that perfectly spans the appropriate subspace. We 
have used this approach for interpolation/extrapolation problems [4] and have found excellent agreement 
between the final scattering predictions from the subspace approach and the true scattering predictions from 
direct inversion of the impedance matrix. 

For other problems where the scattering predictions are needed over a limited sector only once, we must find 
a matrix, J, that is (1) efficient to compute, and (2) spans the same subspace as the true currents. In the mea- 
sured equation of invariance (MEI) approach to finite element solutions, these false currents are called met- 
rons. The metrons are used in MEI to derive coefficients for local finite element mesh points that can be used 
to reliably compute nearby fields which would otherwise require an integral over the target surface. There are 
many considerations in the derivation of adequate metrons, and generally useful metrons have not yet been 
derived for this problem. However, it seems likely that some variation on the physical optics currents would 
be a good starting point. 

Another issue is the number of rows needed in Ja. We need to use enough rows to satisfy the equality in Eq 6 
to an acceptable level. If the prediction angles are oversampled, then it is possible that fewer rows will be 
required to satisfy Eq 6 than there are columns of A. Note that we can also regularize the generalized inverse 
of Ja to account for anticipated errors in the model or currents. 
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4.0 COMPUTATIONS 

Table 1 shows some comparisons between subspace and direct inverse computations for scattering predic- 

Table 1: Computational comparisons between subspace and direct inversion 

Computation Complexity Method Comments 

VIa(ZIa)* and /a(Z/a)+a 0[/J2n3 + 2w2«3 + «1 + 4n1n2n-i] subspace Takes advantage of 
common terms 

*'Z-' and Z~la 0[n^ + 2n}nj] direct 

s = Wa(Z/a)+« 0[2n,n2n3 +njn3] subspace Includes scattering 
over entire sector 
(not just scalar) s = b'Ya 0[nI7i| + n,7!2] direct 

«j - Number of measurements, n2 - Number of model elements 
«3 - Number of subspace coefficients (typically slightly greater than nl) 

tions. The number of predictions and subspace coefficients, «j and «3 respectively, are typically comparable 

and much smaller than the number of model basis functions, n2,- If we let n x and n3 be a fraction of n2, i.e. n j 
= «3 = a«2>then the subspace method reduces the total number of computations per iteration by about a factor 
of about a. If we perturb only the diagonal impedances (complex loads) for both methods, the subspace 

approach results in a total per iteration cost reduction factor of a2. In general we would expect a to be about 
an order of magnitude. Note that there is a relatively fixed set up cost associated with the subspace approach 
to compute currents and a projection for each angular sector. 

5.0 SUMMARY 

We have presented a method by which the computational complexity of MM scattering predictions for limited 
angle sectors can be significantly reduced. We develop a subspace projection for the impedance matrix using 
either currents or metrons which span the same prediction subspace as the currents. The approach is analo- 
gous to that used in the MEI approach to finite element solutions. 

The computational savings is highly dependent on the model fidelity, sector size, and sampling density of the 
scattered field. However, savings between one and two orders of magnitude should be typical. 
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APPLICATION OF BIÖRTHOGONAL B-SPLINE-WAVELETS TO TELEGRAPHER'S 

EQUATIONS 

MARTIN AIDAM AND PETER RUSSER 

LEHRSTUHL FÜR HOCHFREQUENZTECHNIK AN DER TECHNISCHEN UNIVERSITÄT MÜNCHEN, GERMANY 

ABSTRACT. Biorthogonal B-spHne-wavelets are used to represent voltage and current of telegrapher's equations with 
respect to space. A Petrov-Galerkin procedure using B-splines as trial functions {more precisely the primal scaling 
function which is the B-spline and the derived primal wavelet) and the dual scaling functions and wavelets as test 
functions, is applied to obtain a set of ordinary differential equations (method of lines) which are integrated by a 
simple explicit two-step scheme, namely Nyström's method and the modified Euler scheme to start the procedure. 
Results of numerical experiments including thresholding effects are presented. 

1. INTRODUCTION 

The interest in investigating wavelets in the scope of computational electromagnetics originates mainly from 
three properties of wavelets: the capability to construct adaptive schemes easily without evaluating costly error 
estimates, the uniform boundedness of the matrices of some operators in a wavelet basis, and their efficiency in 
data compression, i.e. a function can be represented by much fewer coefficients. For overviews see e.g. [2, 3]. 

So far, the application of wavelets to electromagnetic problems —formulated as partial differential equations— 
has found limited use, where the advantages of wavelets have not been fully exploited. In some cases only scaling 
functions [9, 12], and in others only one additional wavelet level [5, 11] have been used. In contrast, the algorithm, 
we implemented, allows —at least theoretically— an arbitrary number of additional wavelet levels. The more 
wavelet levels one uses, the more efficient will be the lossy data compression via thresholding, i.e. in the adaptive 
procedure one has less unknowns. 

In this paper, we investigate the capability of biorthogonal B-spline-wavelets for the application to telegrapher's 
equations. 

2. B-SPLINE-WAVELETS 

To easily incorporate ideal electric and magnetic boundaries, one likes to use the mirror principle. This means, 
that the scaling and wavelet functions we use have to be symmetric or antisymmetric. Moreover, we favour 
compactly supported wavelets, since difference operators should only have a finite extent. Unfortunately, compactly 
supported, symmetric, real wavelets which are orthogonal do not exist, so one is forced to drop orthogonality or 
to use wavelets with an infinite support and approximate the infinite difference operator by a finite one [6]. In this 
paper, the first option is made, and the biorthogonal, symmetric, compactly supported and real B-spline-wavelets 
constructed by Cohen et. al. [1] are chosen. 

As scaling function, the cardinal B-splines 

(1) <pd(x):=d[0,h...,d](--x-^ 

are used. [U,... ,ti+d]f is the divided difference of / € C'(R) for the knot sequence ti < ... ^ tj+<j, x+ := 
(max{0,x})d , [x] := max{z e % : z ^ x}, x € R \x\ := min{z e Z : z ^ x}, x S R . These functions are 
symmetric around l(d)/2, with 

(2) <pd(x + 1(d)) = tpd(-x)    for   x€R,     *(d):=dmod2: 
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and have compact support suppig = [h,h] with h := — [|J and h := [|]. They are refinable 

(3) •pi(x) = V2j^hkVd(2x-k)    with    hk:=21-d(._t
d,ä.\je{h,...,l1+d} 

and of order d, i.e. all polynomials at most of degree d — 1 can be represented exactly as linear combinations of 
the translates ipd(- — k). k € Z 

The dual functions <pdj,d^d,d€K, l(d+d) = 0, also have compact support suppig j = [h — d+l,l2 + d— 1] 
and the same symmetry property 

(4) <Pdj{x + 1(d)) = <pdJ(-x) 

for x £ JR.. They are biorthogonal to <pd with respect to the inner product of L-> (R) 

(5) (Vd,<i>dj(--k))L,m =6o,k    for    &€Z, 

and of order d. They are also refinable 

(6a) Vd.^) = >/2 51 'h^d,d(2x -k) 

where 

(6b) li—h-d+1 

(6c)        hk ~ -s 5Z fiPk-i V2 j'ez 

(6d) 

(6e) 

"Mii> 
*-<-# fc>r;'+")(„2;, 

As usual, the wavelets are defined as 

(7) ^„-(x) = y/2 J29k<fid(2x - k) 
kez 

(8) i>d,i(x) = v^ £ ~SWd,i(2x - fc) 

/., := h + d - 1 

ke 
d + d 

+ 1,..., 

i e {/! «i +d} 

+ ^-i 

;'€ 
d+d     , d+rf       1 

-— + 1'-   — -1) 

gk = (-1)%-* 

at = (-l)*fti_t. 

They are symmetric or antisymmetric around 1/2, depending on 1(d), i.e. 

(9) 1>dj(X + l) = (-lfd>$ij(-x),    i,dJ(x + l) = (-l)l^i,dJ(-x). 

FIGURE 1. Example (3,3)-B-spline wavelets: scaling function ips(x — 1), wavelet ip3,s(x — 2), dual 
scaling function (p^,z(x — 3) and dual wavelet ^3,3(2 — 2). 

0        12        3        4 
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Fig. 1 shows as an example the (3,3)-B-spline scaling function, the wavelet, the dual scaling function and the 
dual wavelet. Although the dual functions look a little odd, they are able to represent quadratic polynomials 
exactly. 

3. FUNCTIONS IN WAVELET SPACES 

A function / e Li(R) can be represented by the sum 
oo 

(10) f(x) = Y, Ck?c,k(x) +EE d*Vm.*(z) - 
heZ m-CkeZ 

where the superscript C indicates an arbitrary coarsest resolution level (we number higher resolution levels by 
higher superscripts) and 

(11) <pjik(x) = 2JV<p(2>x-k),    ^k(x) = 2j'2<P(Vx-k). 

For convenience, we drop the subscripts denoting the primal and dual orders of the expansion (there should be no 
possibility for confusion). 

Practically, we truncate the infinite sum at some finest wavelet level M. With the help of the fast wavelet 
transform, our approximation can be represented equivalently by 

(12) /Or) = X>f+Wi.*- 
fcez 

For the solution of initial value problems using wavelet algorithms one needs to be able to express more or less 
arbitrary functions in terms of wavelet coefficients. The easiest way to do this is to expand the function only in 
terms of scaling coefficients at some finest level M + 1 where the approximation error is acceptable and then to 
apply the fast wavelet transform to calculate all the wavelet coefficients at coarser levels. To calculate the scaling 
coefficients, we apply the oversampling technique proposed by Ware [14] 

(13) Cj,k = e^U) = 2-i'2Ylv"^2~^k + I» ■ 

The weights IUJ are chosen such that 

(14) ejA<Pj.k') = 52 "W(| + *-*')= Sk,f ■ 
i 

Ware also discusses how to calculate directly the wavelet coefficients and how to calculate them in an adapted 
lacunary basis. This will be implemented soon, but was not used in our numerical experiments, yet. 

To incorporate ideal boundary conditions, say at x — a and i = ft, it is possible to extend this interval by 
using the mirror principle or by periodizing. Straight forward calculations give the properties of the coefficients of 
symmetric, antisymmetric and periodic functions in a B-spline-wavelet basis for the problem at hand. 

4. DISCRETIZING DIFFERENTIAL OPERATORS 

Petrov-Galerkin discretizations of linear differential equations with constant coefficients lead to integrals of the 
type 

OO 

I f^(x)g(x)dx, 

where /(n) is the trial function's nth derivative and g is the test function. Apparently, when using scaling functions 
and wavelets as trial functions and their duals as test functions, we have four different types 

OO CO 

(15a) A(j,i,l,k) = j ^(x)^i,k(x)dx B(jJ,l,k) = J ^(x)^,k(x)dx 
-CO -CO 

CO CC 

(15b) C(j,Ll,k) = J v^(x)i>i,k(x)dx D(j..i,l,k) = J xl>{^(x)^,k(x)dx. 
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Fortunately, all these integrals can be calculated from the knowledge of A(0,0, /,0). To calculate this integral, 
one has to solve an eigenvalue problem and add appropriate conditions to uniquely define the eigenvector [7]. We 
use the program written by Angela Kunoth [8], which implements the method presented in [7] and the references 
therein. 

Let K{i) = .4(0,0,2,0), i € Z denote the results given by Kunoth's program. A straight forward calculation 
yields 

1. A(j,i,l,k) 
(a) i = j 

(16a) A(j,j,l,k) = 2'nK(l-k) 

(b) i < j 

(16b) q = j-i A1,0(p) = 2"Y,~h»K(->/ + P) 
V 

(16c) A(i,iXk) = 2inAqfi{l-2*k) J4,,0(p) = 2"^ft,A,-i,o(p-29-1
i/) 

(c) i > j 

(16d) q = i-j A0,iip)=2nY/
h"K('/-P) 

(16e) A(j,i,l,k) = 2'nA0,g(k-2"l) A0,q(p) = 2"]T/wlo,,-i(p- 2«~M 
V 

2. B(j,i,l,k) (in this case; ^ i) 

(17a) Q = j-i Bq(p) = ^g„Aq+ifi(v + 2p) 

(17b) B{j,i,lk) = 2inBq{l-2"k) 

3. C(j,i,l,k) (in this case i ^ j) 

(18a) q = i-j C,(p) = ]T gvAo,,+i (v + 2p) 

(18b) C(j,i,l,k) = 2'nCq(k - 2«;) 

4. D(j,i,l,k) 
(a) i = j 

(19a) DUJJ,k) = 2u+1~>nDo,o(l-k) A>,o(p) = Y,9^^K(" ~ » + 2P) 

(b) t < j 

(19b) « = j-i ß,,o(p) = ^fl,^9^«,o(^-2V + 2p) 

(19c) D(j,i,l,k) = 2<i+1)nZ>,,o(i - 2»fc) 

(c) j > j 

(19d) ? = i - j A>,,(p) = J2 9"J2 Sß A°,i(ß ~ 2<V + 2p) 

(19e) DU, i,I, k) = 2u+l)nD0,q{k - 2"l) 
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5. APPLICATION TO TELEGRAPHER'S EQUATIONS 

The simplest wave equations of electrodynamics, telegrapher's equations, write in normalized variables 

«™ du(t'x) -   aai(t'x) 
(20a) -w- - ~ß-ä£- 
,      , di(t,x)        „du(t,x) 

where ß € K., ß > 0 is the normalized speed of the travelling waves on the line, u : Kj x [0,1] -> R the normalized 
voltage and i : Rj x [0,1] -> B. the normalized current. The initial boundary value problem iEl,0OO, 
£€Ro={zeR.:z>0} with the initial conditions u0(x) = u(0,x), i0{x) = i(0,x) and ideal electric, magnetic 
and periodic boundary conditions will be investigated. 

We assume, that the solutions u(t,x) and i(t,x) can be written as a linear combination of our scaling function 
(and its translates) and our wavelet (and its translates and dilates) with time dependent coefficients, e.g. 

M 

(21) u(t,x) =    Y,   "t'^Wvc./kte) + 5Z   5Z «"(*)*»,*(*)• 
JceKc-i m=C iteK„ 

Km denote the appropriate sets of indices for each level and the superscript C - 1 now indicates the scaling 
coefficients. 

These expansions are inserted into telegrapher's equations, and then the resulting equations are tested with the 
biorthogonal scaling and wavelet functions. This leads to a system of ordinary differential equations 

rltim ft} 
(22a) ^p- = -ßDfI(t)    C-l^m^M 

(22b) 2kp = _/jDj»u(o   keicm, 

which has to be integrated (method of lines). U(t), I(t) denote the vectors of all coefficients uf(t), uf(t) of the 
expansions of u(t,x) and i(t,x), e.g. 

(23) I(t) =  (*£-„'«.•■• .iSiW-iSlnW.- .&»(*).- .tfinM.- .'ifaxW)7' • 
The subscripts min and max denote the minimum resp. the maximum of each set of indices (denoted by the 
superscript). The difference operators are given by the row vectors 

(24a) Vf-1 = (A(C,C,lmin,k),... ,A(C,C,lItax,k),B(C,C,lmin,k),...,B(M,C,lmix,k)) 

(24b) Z>JP = (C(C,m,lmi„,k),...,C(C,m,lnax,k),D(C,m,lmii>,k),... ,D(M,m,lm!iX,k)) 

where C ^ m ^ M and k runs through the appropriate index sets. 

6. TIME INTEGRATION 

For time integration, we use Nyström's method with q = 0 [10]. With this, equations (22) write 

(25a) U(l + 1) = U(l - 1) - 2AtßVI(l) 

(25b) 1(1 + 1) = 1(1 - 1) - 2/\tßVU{l) 

with 

(25c) V = (Vgr\... ,vg^,Vgin,... ,V^)T. 

Of course, this is a simple multi-step scheme, which has to be started with a one-step method. We use the modified 
Euler scheme [10] which is also second order accurate 

(26a) (7(1) = 17(0) - AtßV (7(0) - y/32W(0) ) C-l^m^M k e Km 

(26b) 7(1) = 7(0) - AtßV (u(0) - ^-ßVI(d)\ I € IN 1^1 
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TABLE 1. Bounds on the time step (three digits). 

(d.d) 'Vmax 

(2,4),(3,3) 1.27 
(2,6),(3,5),(4,4) 1.16 
(2,8),(3,7),...,(5,5) 1.10 
(2,10),(3,9),...,(6,6) 1.05 
(2,12),(3,11),...,(7,7) 1.01 
(2,14),(3,13),...,(8,8) 0.989 
(2,16),(3,15),..-,(9,9) 0.964 
(2,18),(3,17),...,(10,10) 0.945 

Apparently, (25) is the famous leap-frog scheme. U(2l) depends neither on U(2l +1) nor on 1(21), only on 1(21 +1). 
For special choices of initial conditions, the calculation of only one part of the scheme suffices (either U(2l + 1) 
and 1(21) or U(2l) and 1(21 + 1)), but not for general initial conditions. 

Equations (25) have to fulfill Neumann's condition to be stable [13]. The evaluation of the eigenvalues of the 
amplification matrix of (25) gives upper bounds for the time step (of course depending on the orders of the expansion 
functions used). All eigenvalues, i.e. their absolute value, must not be greater than one to avoid exponentially 
growing solutions. This evaluation, which has been carried out numerically —since the mask coefficients also have 
been calculated numerically— results in Tab. 1, where 

(27) 7 := Atß2M+2 and 7max := max{7 : absolute values of all eigenvalues ^ 1}. 

7. NUMERICAL EXPERIMENTS 

As examples we present our results for periodic boundary conditions and the initial conditions 

if(x - 0.6)2    for 0.4 ^ x < 0.6, 
(28a; 

(28b) 

uo(x) = 

i0(x) 

f(*-o, 
1° 

-{■ 
Id- 
lo 

0.4)2(z - 0.6)2 

else 

for 0.4 ^ x ^ 0.6, 

else. 

For different combinations of electric and magnetic boundaries we did not find any difference to the periodic case. 
And as long as the initial conditions are smooth functions, the algorithm works very well. But if one tries e.g. a 
box function, the results deteriorate with a lot of oscillations, just the same situation like e.g. with finite elements 
(apart from some extraordinary cases with magic time steps). 

First, let's have a look at the behaviour of the error with respect to time and as a function of the time step. 
For easy evaluation of the error, we choose ß = 1 and Ai = 1/K ,K€M,so that after K time steps, the solution 
should equal the initial conditions exactly. As voltage and current are the same, it suffices to look at the current. 
We define the error as 

(29) e(nKAt) = 
\\i(nKAt,x) -i0(x)\ 

\\io(x)\\M+i 
,n€lNwith    ||/(x)||„ = 2-n £ |/(2-*)| 

To see the dispersion behaviour, we set M = 7, C = 3 and used the (3,3)-B-spline-wavelets. As time step, we 
used Atmax = 7max/2

M+2,Atmax/2,Atmax/4, Aimax/8,Atmax/16 and Armax/32. Results can be seen in Fig. 2, left 
diagram. The curves correspond from top to bottom to the time step in descending order. To enhance readability, 
the curve for Aimax/32 was dashed. 

Obviously, as one decreases the time step, the error becomes smaller and the error stays relatively small for a 
longer time. Note- that e.g. for the biggest time step t = 100 means around 40,000 time steps and for the smallest 
around 1,200,000. The second interesting thing is, that decreasing the time step below a certain bound (here 
approx. Atmax/16) improves the solution only for a short time. We presume that from this property it might be 
possible to estimate the at least necessary highest resolution level to obtain a desired accuracy and the allowed 
maximum time step to achieve this. 
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FIGURE 2. Left: Time behaviour of the error for six different time steps (top to bottom: At = 
AfmalI,..., Atmax/16 (solid) and Atmax/32 (dashed)). Right: Current at t = 0, t = 50 and t = 100 
(solid, dashed, dashdotted). 
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TABLE 2. Influence of thresholding and increasing the dual order: Scaling level 5 and 3 additional 
wavelet levels. 

r 0.0 10~6 io-5 10~4 io-3 io-'- 
d e n e V e V e n £ V £ V 
3 0.0343 1.0 0.0343 0.996 0.0343 0.574 0.0326 0.391 0.0661 0.211 1.26 0.0469 
5 0.0316 1.0 0.0316 0.984 0.0316 0.602 0.0313 0.355 0.0445 0.23 1.1 0.0508 
7 0.0301 1.0 0.0301 0.98 0.0301 0.629 0.0299 0.32 0.0416 0.246 0.803 0.176 
9 0.0289 1.0 0.0289 0.969 0.0288 0.633 0.029 0.391 0.038 0.262 0.604 0.227 
11 0.0279 1.0 0.0279 0.973 0.0279 0.594 0.0282 0.348 0.0401 0.277 0.711 0.223 
13 0.0273 1.0 0.0273 0.965 0.0273 0.664 0.0276 0.398 0.0307 0.211 0.753 0.234 
15 0.0267 1.0 0.0267 0.949 0.0267 0.676 0.0269 0.355 0.0395 0.285 0.77 0.188 

To visualize what the error means, the right hand side of Fig. 2 shows the initial current (solid), the current 
after 50 (dashed) and after 100 (dashdotted) seconds for At = Atmax/2, i.e. an error about 18% resp. 35%. The 
pulse travels to the right, so in contrast to FDTD, it has no tail behind but in front of it. So the high frequency 
components are faster than they should be. A rigorous characterization of the dispersion error is on its way. 

To investigate the influence of thresholding, we define a sparsity coefficient 
number of nonzero coefficients 

^ total number of coefficients 
A simple thresholding procedure which sets every coefficient with absolute value smaller than T ■ Imax, /ma>r = 
max{|j^_1| : k € ICc-i] to zero, is applied. 

To see the influence of the dual order —increasing the dual order should improve the compression, i.e. decrease 
our sparsity coefficient— we use again as primal order 3 and as scaling level 5, i.e. 32 scaling coefficients. We 
looked at two cases. First, three additional wavelet levels (i.e. a total number of 256 unknowns) and second, five 
additional wavelet levels (resulting in 1024 unknown coefficients). Results are presented in Tab. 2 and Tab. 3. 

Increasing the dual order improves the error slightly, but not significantly. In both cases, thresholding up to a 
certain threshold only reduces the sparsity coefficient, but does not affect the error. In the first case a sparsity of 
approximately 25% seems to be obtainable, in the second case about 15%. Note that if one is interested only in a 
rough estimation of global parameters (such as S-parameters) and doesn't need high accuracy in the field values 
(like one would for calculating impedances of e.g. antennas), with five additional wavelet levels less than 2% of 
the expansion coefficients suffice to obtain an accuracy of 10% in the fields. Increasing r above a certain number, 
increases the error dramatically. A precalculation of this bound rma!t would be extremely valuable. Moreover, using 
more wavelet levels improves the sparsity coefficient. But unfortunately, Tmax seems to depend on the number of 
wavelet levels. We presume that this is due to the simple thresholding procedure we applied, and conclude that it 
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TABLE 3. Influence of thresholding and increasing the dual order: Scaling level 5 and 5 additional 
wavelet levels. 

T 0.0 10-" 10"" 10"4 lO"3 10"* 

d e n e 1 e V e n £ V £ n 
3 0.0105 1.0 0.0105 0.266 0.0106 0.206 0.0163 0.146 0.188 0.0176 1.29 0.00879 
5 0.00962 1.0 0.00962 0.293 0.00966 0.211 0.0135 0.143 0.112 0.0225 1.26 0.00781 
7 0.00912 1.0 0.00912 0.290 0.00913 0.192 0.0123 0.159 0.0957 0.0176 1.26 0.00781 
9 0.00872 1.0 0.00871 0.291 0.00886 0.199 0.0116 0.179 0.103 0.0146 1.22 0.00781 
11 0.00839 1.0 0.0084 0.300 0.0084 0.196 0.0109 0.195 0.107 0.0127 1.19 0.00879 
13 0.00821 1.0 0.00821 0.299 0.0083 0.215 0.0112 0.181 0.106 0.0137 1.23 0.009772 
15 0.00801 1.0 0.00801 0.301 0.00809 0.201 0.0116 0.158 0.107 0.0137 1.22 0.00781 

is not good enough, especially if one wants to construct adaptive algorithms where the number of wavelet levels is 
not fixed. 

8. CONCLUSION 

We presented how to solve telegrapher's equations using biorthogonal B-spIine-wavelets with a Petrov-Galerkin 
method using Nyström's method for time integration. The results shown validate our approach and point out, what 
has to be done to create more efficient algorithms. First of all, we conclude that it is unavoidable to implement 
fully adaptive algorithms to exploit wavelets as much as possible. Don't forget that using wavelets increases the 
length of the difference operators involved. This means that sparsity is the only key to reduce again the calculation 
time. Results by Gottelmann [4] indicate that one needs five to six wavelet levels to be computationally as efficient 
as using only scaling functions. Further we conclude that an appropriate thresholding procedure has to be invented 
to become independent of the number of wavelet levels used. 
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Abstract— The Numerical Electromagnetic Code (NEC) is one of the most popular 
tools used for electromagnetic simulation of wireframe structures. The application of 
NEC is often limited to small to medium sized problems due to its dense matrix nature. 
In this paper, an approach by using the wavelet transform to increase the efficiency and 
capability of NEC is presented. In the approach, a sparse moment matrix equation can 
be produced and solved by efficient sparse solver instead of solving full matrix equation 
in the original NEC. Under close examination, structures with less singularities are 
found to have much better accuracy and higher compression rates. 

I. INTRODUCTION 

Numerical Electromagnetic Code (NEC) [1] is probably still the most popular tool for 
modelling and analysis of electromagnetic (EM) response of complex wire-frame metallic 
structures. NEC uses the method of moment (MoM) together with the Lower and Upper 
triangular factorization method (LU) to solve the full matrix equation. This makes NEC 
extremely memory and computational time intensive when the problem is large. It is 
formidable for NEC to treat problems with more than 3000 unknowns even on high-end 
workstations and low-end supercomputers. In engineering applications, many problems are 
large and complicated with unknowns much more than this 3000. To solve large problems 
by NEC has always been a challenging task for computational electromagnetic researchers. 

In recent years, there has been growing interest in applying wavelets to EM problems. 
The wavelet transform method (WTM) [2] has been developed using the translating and 
dilating of a suitable basis function, known as the mother wavelet. This mother wavelet 
then undergoes the decomposition and reconstruction algorithms producing the wavelet 
transform matrix. In this matrix, each row stands for a wavelet basis in TV-dimensional 
wavelet vector space. The translation of the highest resolution wavelet makes up half of the 
basis set and the next highest resolution makes up a quarter of it. This goes on down the 

hierarchy. 

In this paper, the WTM is applied to NEC so as to transform the full impedance matrix into 
a highly sparse matrix and then solved using a sparse solver. This would largely reduce the 
memory required for the storage of the impedance matrix and also cut down computational 
time by using the sparse solver instead of the LU factorization technique. 

The modified version of NEC (NEC-WTM) is tested by a number of examples. The com- 
pression rate and accuracy is then compared with the results obtained from the original 
version 2 of NEC (NEC-2). Some limitations of the NEC-WTM has also been examined. 
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II. THE WAVELET MATRIX TRANSFORMATION 

In the NEC, like many other MoM based codes, the most time consuming part in the 
computation is to solve the moment matrix equation 

[z] ■ m = [v], (i) 
where [Z] is a full moment matrix, [T\ is current intensity related unknown column vector to 
be solved, and [V] is the known source related column vector. In NEC, the LU decomposition 
method which forms the bulk of the CPU time required to solve the full matrix equation 
is 0(N3) for large matrix order N. For large problem, due to the memory required for the 
storage of all the elements in the full matrix, the out-of-core operation has to be performed 
where the [Z] matrix had to be stored in 4 sequential access files each of the size of the full 
matrix. This manipulation of the full matrix is therefore an extremely storage and CPU 
demanding process. 

In order to increase the efficiency and capability for larger problems, we have applied the 
recently developed wavelet transform method (WTM) [2] into the NEC. The wavelet matrix 
transformation will produce a sparse moment matrix similar to that obtained by using basis 
expansion in MoM. By using the sparse wavelet transform matrix [W], the wavelet matrix 
transformation can be carried out on (1) as follows: 

[w][^][^]r • ([w]Tri[i\ = mm (2) 
where [W]T is the transpose of the wavelet transform matrix [W] . After this transformation, 
we now obtain a new matrix equation. 

[Z']-[I'] = [VI (3) 

where , \Z'\ = [Wp][W]2\ [/'] = {\WfY\l\, and [V] = [W][V]- Next, a suitable 
threshold value T, has to be chosen. We can then discard the elements in the matrix [Z1] 
whose magnitudes are smaller than T • m, where m is the largest magnitude of the matrix 
elements. The threshold value T need to be well chosen so as to balance the computational 
efficiency and accuracy of the approximate solutions. 

The resulting matrix from this process is now a sparse one. The sparse matrix can then be 
solved much more efficiently by a sparse solver. Solving a sparse matrix requires 0{NlogN) 
operations, where N is the number of unknowns on the structure. This is much more 
efficient as compared to 0(JV3) for a full matrix solution in the original version of NEC-2. 
Once the [/'] is solved, matrix [i] can then be reconstructed by 

[i] = [wnn (4) 
This process would therefore be an efficient method of solution which may considerably 
reduces the computational time and storage requirements. 

III. IMPLEMENTATION AND EXPERIMENT 

The wavelet transform method was implemented into the NEC code and then the NEC- 
WTM code was used to test various examples and to study its effectiveness. The results 
obtained by the NEC-WTM code were compared with the solutions obtained by the original 
NEC-2. 
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A. Example: Rhombic Antenna 

As a numerical example, the structure of a rhombic antenna [6] above a perfectly conducting 
ground plane was simulated. The geometry of the considered problem is shown in Fig. 1(a). 
The structure shows a terminated rhombic antenna with each leg (L) of 6 wavelength, 
the angle P = 70° (indicated in Fig. 1(a)), a height of 1.1 wavelength above a perfectly 
conducting ground. The frequency used in the simulation is 300 MHz and the excitation is 
a 1 V voltage source. The terminating resistance (load) is 800fl. 

Spine Inqxdance Matrix 

(a) (b) 

Fig. 1. (a) Terminated rhombic antenna (b) The sparsity pattern of the matrix \Z'\ after the wavelet 
transform with a threshold value of r = 10~8. 

The sparsity pattern of the [Z1] matrix with a threshold value T = 10-8 is shown in Fig. 1(b). 
The black dots show the remaining nonzero elements. In this particular case, only 43318 
elements are left out of the total 262144 elements. This is 16.52% of the original full 512 
by 512 matrix. 

Fig. 2 compares the full matrix solution from the original NEC-2 and the sparse matrix 
solution from the NEC-WTM with a threshold of T = 10-8. 

From the comparison, it can be seen that the approximate solutions by the NEC-WTM 
are. very close to those by the original NEC-2, showing a high accuracy even when the 
compression rate is very high. In this case, only 16.52% of the elements in the [Z1] are left. 
From this numerical example, it can be shown that with a very high compression rate, the 
accuracy of the approximate solution can be very high. With this high compression rate, 
computational time would be drastically reduced, showing that the matrix equation can be 
solved more efficiently while maintaining good accuracy. It should be noted that, the larger 
the size of EM problem, the more effective the wavelet matrix transform method. 

However, there are some limitations to the method. It has been observed that this method 
is sensitive to singularity. The more the number of singularity, the less effective the method. 
Therefore, this application is more effective for large and smooth problems. Another prob- 
lem faced is the fact that, the NEC-WTM is only applicable to problems with an impedance 
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Fig. 2. Comparison of the sparse matrix solution using the NEC-WTM (r = HP8, compression rate 16.52%) 
and the full matrix solution by the original NEC-2. (a) Current distribution on two of the four legs (b) Total 
gain pattern. 

matrix size of 2N where N is an integer. This problem will be solved most efficiently by 
using the adaptive segmentation approach dealt with in another paper [7]. 

B. Example: Elliptical Scatterer 

The next numerical example was designed to examine the relation between the compression 
rate and the accuracy of both the current distribution and scattering power pattern. 

This example involves an elliptical scatterer. The geometry of the considered structure is 
shown in Fig. 3(a). The figure shows an elliptical scatterer under the incidence of a plane 
wave coming down at 30° from the ^-direction in the x-y plane. The frequency used in this 
simulation is 3 GHz. 

The sparsity pattern of the [Z'] matrix with a threshold value T — 10~6 is shown in Fig. 3(b). 
For this example, 76642 elements out of a total of 1048576 elements were left. This is 7.31% 
of the original full 1024 by 1024 matrix. 
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Sparse Impedance Matrix 

(a) 

Fig. 3. (a) Elliptical Scatterer, (b) The sparsity pattern of the matrix [Z'\ after the wavelet transform with 
a threshold value of T = 10~6. 

A comparison was done for four different threshold values (T = 10-4, 10"5, 10-6, 10-7). 
The compression rates corresponding to the four cases are 1.37%, 3.36%, 7.31% and 12.45%, 
respectively. 

Fig. 4 shows the comparisons between the full matrix current intensity solution and the 
four sparse matrix solutions. With a populated rate of 1.37%, the current intensity deviates 
from the true value. As the populated rate increases to 7.31%, it can be noted that the 
result gradually approaches the true value with many points oscillating around the actual 
solution. At the populated rate of 12.45%, the error between the NEC-2 and the NEC- 
WTM solutions is negligible. This again justifies that the NEC-WTM can produce results 
of high accuracy with a high compression rate. 

Fig. 5 shows the scattering power in the x-z plane. A review of Fig. 4 and 5 shows that, for a 
higher compression rate of 1.37%, although the NEC-WTM solution of the current intensity 
is not very accurate, the scattering power pattern obtained seems more acceptable. From 
Fig. 5(c), the results shows that when the compression rate is 7.31%, the accuracy of the 
NEC-WTM solution is sufficiently accurate. This shows that for users who are interested 
only in the scattering power pattern, a higher compression rate may be used to achieve 
results with sufficient accuracy. The use of a Z matrix of less populated rate will then 
translate into less computation time and memory space required. 

Table I shows a comparison between the CPU time required to solve the sparse matrix using 
a sparse solver as compared to the LU factorization method used in the original NEC-2. 
This was done on the matrices from this example. As seen from Table I, for the populated 
rate of 3.36%, the CPU time required to solve this 1024 by 1024 matrix is approximately 
29 times faster than that of the original time required. This shows a great improvement in 
CPU time required for the NEC-WTM. 
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(d) 

Fig. 4. Comparison of current intensity plots with compression rates of (a) 1.37% (b) 3.36%, (c) 7.31% and 
(d) 12.45% with the full matrix, respectively. 
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Fig. 5. Comparison of scattering power plots with compression rates of (e) 1.37% (f) 3.36%, (g) 7.31% and 
(h) 12.45% with full matrix for x-z plane, respectively. 
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TABLE I 
SPARSITY AND CPU TIME 

Populated Rate CPU Time (sec) No. Times Faster 
100% 374.7 1.00 
12.5% 73.62 5.09 
7.31% 68.78 5.45 
3.36% 12.98 28.86 
1.37% 6.75 55.51 

In this second example, the effect of threshold value on the accuracy of the results has been 
examined. The effects of threshold values to the accuracy of both the current intensity and 
scattering power pattern were investigated. It can be concluded that, depending on the 
required results, a suitable threshold should be chosen so as to balance the computational 
cost and the accuracy required. 

IV. CONCLUSIONS 

In this paper, acceleration of NEC computation by using the wavelet transform method is 
proposed and studied. By using the wavelet transform method, instead of solving a full 
matrix equation in the original NEC-2 at a computation cost of 0(N3), a sparse matrix can 
be obtained and solved efficiently by sparse solvers with an operational cost of 0(NlogN), 

It is shown that with the NEC-WTM approach, one can obtain accurate enough approxi- 
mate solutions with a very sparse matrix equation. The effectiveness and accuracy of the 
method are shown by numerical examples. Some of the limitations to this method has been 
examined. 
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Abstract— The realistic modelling and simulation of wire-frame structures is an im- 
portant part of computational electromagnetics. The Numerical Electromagnetic Code 
(NEC) is one of the most popular tools for electromagnetic simulation of wire-grid 
structures. The application of NEC is often limited to small to medium sized prob- 
lems due to its dense matrix nature. In order to perform a simulation using NEC, 
it is important to model the structure accurately so as to obtain realistic simulation 
results. Adaptive segmentation algorithms have been developed with the aim of gener- 
ating optimal NEC models so as to reduce redundancy and computational cost. Some 
numerical examples are done to show its validity. 

I. INTRODUCTION 

Numerical Electromagnetic Code (NEC) [1] is a useful and popular tool for the modelling 
and analysis of electromagnetic (EM) response of complex wire-frame metallic structures. 
NEC is based on, the method of moment (MoM) and full matrix equation solver, and thus, 
it is extremely hungry for memory and computational time for large-size problems. In engi- 
neering application, many problems axe large and complicated. To reduce the computational 
cost while maintaining the accuracy has always been a challenging problem. 

In order to get results of high accuracy, the modelling of a structure using the optimal 
number of segmentation is critical. Therefore, the accurate modelling of a complex structure 
for the use of NEC itself has proven to be a laborious task. Much attention has been given 
to the accurate modelling of a wire-grid structure. 

In this article, adaptive segmentation algorithms are presented to allow optimal segmenta- 
tion for NEC models. This reduces redundancy yet maintains good accuracy. An optimized 
NEC model will therefore be translated into the reduction of computational time and mem- 
ory space renuired. There are a number of ways in which adaptive segmentation can be 
performed. From previous experiences in the simulation of complex structures, adaptive 
distance and adaptive current segmentations are found to be more effective. Therefore, 
these algorithms have been developed so as to allow optimized segmentation for complex 
models. 
To further enhance the usefulness of these algorithms, they have been modified such that 
an optimized model with an impedance matrix of 2N can be produced so as to be used with 
the newly developed NEC-WTM [4]. 
The adaptive segmentation algorithms have aided in the optimal segmentation and flexible 
matrix size adjustment for NEC modelling. 
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II. ADAPTIVE SEGMENTATION 

Before a simulation can be done using NEC, the NEC wire-grid model of the structure has 
to be carefully and accurately modelled. The accurate modelling of a structure for the use 
of NEC may be a frustrating job. It has been found that, very often, for a large complex 
structure, wires which are situated far away from the active element in the structure have 
little or negligible effect on the overall radiation pattern. Therefore, it is very useful for 
users to be able to perform some kind of adaptive segmentation. We have developed two 
algorithms that will allow users to deal with the above mentioned problem. 

A. Adaptive Distance Segmentation 

In NEC, the electric field integral equation (EFIE) and the magnetic field integral equa- 
tion (MFIE) are used for the evaluation of electromagnetic responses of thin wires and 
surfaces respectively. The form of EFIE used in NEC for thin wires follows from an integral 
representation for the electric field of a volume current distribution J, 

E(r) = -jk0Zo [ J(r') • Ü(r,r')dV' (1) 
Jv 

where E is the electric field intensity vector, fco = u^/poto the wave number in free space, 

Zo — \Zßo/eo the wave impedance in free space, and / the unit dyadic, G the free space 
dyadic Green's function defined by 

0(r,0= (7+^)5^ (2) 

From (1), it can be seen that, if the observation point r is at a large distance away from 
the source point r', the effect of this point on the overall electric field will be reduced 
significantly. However, the effect of these points can not be totally ignored. With reference 
to the active source point, three field regions are first identified with R% being the outer 
boundary to the first region and R2 the outer boundary of the second region (Ri < R2). 

For each region, a particular number of segments per wavelength is specified. 

Range of Region     Seg./\ 

|r - r0| < Rx       Ni 
jRi < jr-roj <i?2       N2 

|r - r0| > R2       N3 

In the above, iVi > JV2 > JV3 and ro is the active element. This results in an adaptive 
segmentation algorithm, where the number of segments which are within a particular range 
to the active antenna would be given more segments than those located far away from the 
active antenna. By doing so, a more accurate model of the structure can be generated. If 
more then one active element is present in the structure, every active element will be taken 
into consideration before the adaptive distance segmentation is to be performed. With this 
algorithm, unwanted segmentation can be avoided thus eliminating redundancy. Therefore, 
the size of the matrix is reduced to produce a better model. This is especially useful for 
the modeling of large complex structure where the controlling of segmentation can be quite 
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tedious and the matrix size generated large. By reducing the size of the matrix, the memory 
and computational time required automatically reduce. 

B. Adaptive Current Segmentation 

For some cases, due to the complexity of the structure and the coupling between wires in 
the overall structure, it is difficult to estimate the current intensity on different parts of the 
structure. For such structures where higher accuracy results are required, a rough model 
with minimum number of segments can be used to simulate an estimation of the final 
results. By using this rough estimated result, an accurate model can then be generated 
using the adaptive current segmentation algorithm. This algorithm reads in the estimated 
results and then refines the segmentation of the model according to this estimated results. 
At a region with high current intensity, segmentation is increased. Whereas for regions 
with low current intensity, segmentation will be decreased. This method is slightly more 
time consuming than the previous, however, the resultant model can give results of higher 
accuracy. Similarly, this method can avoid redundancy in the total number of unknown 
used, therefore reducing memory space and computational time. 

C. Reshaping Matrix Size Using Adaptive Segmentation 

Besides the above mentioned advantages, the algorithms can allow users to reshape the 
matrix into the desired size. The above two algorithms have also been developed so as 
to overcome the bottle-neck which exists in applications of the wavelet transform method 
(WTM) to NEC. The NEC-WTM is only able to handle matrix of size 2N. Therefore, 
these algorithms has been developed such that the segmentation would be adjusted to have 
exactly 2N segments and used by the NEC-WTM. 

III. IMPLEMENTATION AND EXPERIMENT 

Fig. 1. A Dipole by a Large Cylinder 

Using the newly developed adaptive segmentation algorithm, results from various simula- 
tions were compared so as to verify the usefulness of the algorithms. 

A. Example: Dipole by Cylinder 

Fig. 1 shows the structure used for this example. The structure shows a simple half- 
wavelength dipole located beside a conducting cylinder (modelled using verticle wire-grids). 
Due to the large radius of the cylinder, wire-grids at the far end of the cylinder (located 
furthest away from the active element) has little effect on the overall simulation results. 
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Fig. 2. Comparison of current intensity of 10 segments per wavelength for whole structure and the two cases 
of adaptive segmentation for (a) nearest wire (b) furthest wire from active antenna. 

Simulation was done on the same structure with different number of segmentation. The 
first simulation was done on a structure with a standard of 10 segments per wavelength 
throughout the entire structure. The total number of segmentation for this structure is 
655. This will act as a reference case. Next, using the adaptive segmentation on the 
same structure, two other cases of the same structure were produced. One according to 
distance (Adaptive Distance Segmentation), and another according to current distribution 
from previously simulated results (Adaptive Current Segmentation). The first case has a 
total of 412 segments. Adaptive segmentation according to the distance of each element 
from the active element, has been done on the structure. The next case has a total of 411 
segments. Adaptive current segmentation was performed. 

As can be seen from Fig. 2, the current distribution on the wire nearest and furthest from 
the active dipole for all three cases are very close. Fig. 3 «hows the radiation pattern of each 
adaptive segmentation case as compared to the reference case. Fig. 3(a) shows adaptive 
distance segmentation while Fig. 3(b) shows adaptive current segmentation. 

From the above, it can be concluded that, the number of segmentation required for this 
structure can be reduced from 655 to about 411 keeping the same accuracy. This shows that 
about 37% of the total segments used can become redundant if appropriate segmentation 
has been done. 

B. Example: Monopole on Car 

The next numerical example (Fig. 4) shows a monopole antenna mounted on a structure of 
a car [3], The frequency of simulation is 300 MHz. Similarly, both adaptive distance and 
adaptive current segmentation were done on this model. The resulting comparison of the 
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(b) 

Fig. 3. Comparison of total gain of 10 segments per wavelength for whole structure and (a) adaptive distance 
segmentation (b) adaptive current segmentation. 

Fig. 4. A Monopole mounted on a Car 

total gain for both cases are as shown in Fig. 5. 

For this structure, the reference case is a structure with uniform segmentation of 15 segments 
per wavelength. This gives a total of 1677 segments for the entire structure. When adaptive 
distance segmentation was performed on the structure, the total number of segments was 
reduced to 1241. This reduction in segmentation is obtained with minimal difference in the 
total gain result obtained before and after the reduction as shown in Fig. 5(a). Similarly, 
when adaptive current segmentation is performed, the total number of segments was reduced 
to 1253 and yet maintaining total gain results of high accuracy. This is a 25% reduction 
in segmentation. This example further shows that adaptive segmentation is effective in 
avoiding redundancy during segmentation of a wire-frame structure. 

From these examples, we can see the usefulness of adaptive segmentation algorithms. By 
avoiding redundancy and thus reducing matrix size, memory space and computational time 
can be reduced. These two algorithms have also been modified so that any structure can 
easily be segmented such that the total number of segment becomes 2N ■ This would allow 
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(b) 

Fig. 5. Comparison of total gain of 15 segments per wavelength for whole structure and (a) adaptive distance 
segmentation (b) adaptive current segmentation. 

the use of NEC-WTM on any structure instead of limiting its use to structures with total 

segment of 2". 

IV. CONCLUSIONS 

In this paper, adaptive segmentation algorithms have been developed. One does adaptive 
segmentation according t0 the distance of each segment from the active element. Another 
requires a rough simulation result so as to refine the final optimized segmentation of the 
model. Algorithms have also been developed to reshape the impedance matrix for other ap- 
plications. Tnese adaptive segmentation algorithms have been developed for two purposes. 
Firstly, with these algorithms, an optimized model of a complex structure can be generated 
and thus avoiding the use of redundant segmentation. Secondly, the bottle-neck which ex- 
ist in the NEC-WTM can be eliminated so as to improve the efficiency of the numerical 

electromagnetic code. 
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Abstract 

In support of the Canadian IROQUOIS Class HF Replacement Project (HFRP), 
HF antenna impedances and patterns were calculated using the Numerical 
Electromagnetics Code Version 2 (NEC2) [ref.l]. These results were compared to 
brass scale-model data collected at the SwRI rotary test facility. In this paper, the HF 
transmit fan antenna is discussed as it is an ideal candidate for NEC modeling 
applications. The results of the NEC modeling and measured impedance and pattern 
data for the HF transmit fan antenna are presented herein. The computed and measured 
results compare very favourably. 

1. Introduction 

The Canadian Department of National Defense (DND) is currently identifying 
new HF communication antenna types and locations on the DDH280 IROQUOIS class 
ships' as part of its ongoing HF Replacement Project (HFRP). The purpose of this 
project is to provide these ships with additional HF communication capabilities. The 
major task of the Signal and Geolocation Division at SwRI was to make scale-model 
range measurements to predict antenna patterns at proposed locations on the ship's 
topside. Since the locations of several antennas could be varied, SwRI proposed using 
NEC to guide the choice of such locations. The current HF transmit fan antenna was to 
remain fixed throughout the reconfiguration. It was therefore selected for NEC 
modeling and- used as a benchmark to provide confidence in the NEC results. This 
paper describes the computed and measured results for the HF transmit fan antenna. 
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2. HF Transmit Fan Antenna 

The HF transmit antenna is a large wire rope antenna extending from the ship's 
hanger top to the main mast. The antenna has two symmetrical halves with a single 
feed point at the top-center near the mast. Its frequency of operation is 2-9 MHz. The 
antenna, in its present configuration, does not have a matching network. Antennas 
similar to this are found on most large navy ships. They are relatively well matched to 
50 ohms and have a fairly omni-directional radiation pattern. 

3. NEC Model 

A wire grid model of the full IROQUOIS class ship was developed for analysis 
on a Pentium Pro 200 with 256 Mbytes of memory. To balance the processing time and 
model resolution given this computing resource, the model was gridded for 15 MHz. 
This yielded a segment spacing of typically 2 meters and a segment radius of 
approximately 0.32 meters. The bow and stern were built with a coarser gridding to 
reduce the number of wire segments. The full model contains approximately 3000 

Ä 
Full NEC wire grid model Detail ofHF transmit fan antenna 

segments and requires 150 Mbytes of memory. Each frequency run requires about 1.6 
hours. NEC-Win Pro software and NEC version 2 were used. 

The main hull sections were gridded using the Structure Interpolation and 
Gridding (SIG) program [ref.2]. This program automatically grid surfaces based on a 
set of cross section contours. About 50 percent of the model are symmetrical and were 
therefore produced with the GX (reflection in coordinate planes) card in NEC [ref. 3]. 
Although this makes building the model easier, it does not reduce run time or memory 
because the entire model is not symmetrical. 
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Three-dimensional visualization of the NEC model was accomplished with POV- 
Ray for Windows. The ability to visualize the wire segments as three-dimensional 
cylinders greatly enhance the ability to refine the wire grid model. It provided the 
opportunity to visually check wire radii to ensure that they met the NEC modeling 
guidelines. 

The HF transmit fan was relatively easy to model. It is secured to the deck at the 
lower ends by standoff poles and to the mast through insulators at the upper end. The 
feed point is simple both in practice and in the model. 

4. Scale-Model Measurements 

A 1/48* brass scale model of the DDH 280 IROQUOIS class ship was used to 
make antenna impedance and pattern measurements. The measurements were 
conducted at the SwRI rotary test facility. The test facility consists of a rotating copper 
platform surrounded by a 400-foot diameter radial ground screen. RF signals can be 
generated at elevation angles of 0 to 60 degrees while the rotating platform provides 
360 degrees of azimuthal positioning. All RF and control cables run underground to an 
equipment building approximately 200 feet from the rotator's center. While measuring 
the outputs of scale model antennas as the ship is rotated, amplitude (and, if desired, 
phase) data is recorded relative to a fixed reference antenna. Eight RF channels are 
available for simultaneous data collection of up to eight scale model antennas at a time. 

Mi 
m®. SSspfci* 

SwRI scale-model rotary test facility 
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Measurements were accomplished at the scaled equivalent of fourteen 
frequencies (2.0, 2.5, 3.0, 3.75, 4.5, 5.5, 7.0, 8.5, 10.5, 13.0, 16.0, 19.5, 24.0, 30.0 
MHz), five elevations (0°, 10°, 20°, 30°, 40°) and two polarizations (vertical and 
horizontal). It should also be noted that the measured antenna patterns represent 
relative measurements only. 

5. Results and Comparisons 

As shown in the figures below the computed and measured impedance and 
VSWR plots match well over the fan operating frequency range of 2 - 9 MHz. It 
should be noted that the NEC modeling was completed before the scale-model 
measurements and the NEC model was not "tweaked" to match the measured data. The 
small peak in the measured VSWR around 7 MHz is suspected to be noise or 
interfering signals in the measurements. 

Measured versus NEC Impedance Measured versus NEC VSWR 

 Measured Mag 
- - NEC Mag 
- Measured Real 
-- NECReal 
 Measured Imag 
- - NEC Imag 

Frequency (MHi) 

Impedance Results VSWR Results 

The following figures show the NEC calculated radiation patterns at 4.5 MHz 
compared to the measured data for both vertical and horizontal polarization at 10 
degrees elevation. The NEC data is plotted in dBi whereas the range data is relative to 
a reference antenna. The impedance, VSWR and pattern plots were made using the 
NEC-Win Pro software package. A FORTRAN routine was written to format the range 
data into a standard NEC2 output format so that it could be plotted with the NEC-Win 
Pro polar plotting routine. 
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300 

270 

Comparison of computed and measured data 

Comparison of calculated and measured data 
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6. Conclusions 

NEC2 did an excellent job of predicting the HF transmit fan antenna 
performance, as indicated by both the impedance plots and radiation patterns. These 
results instilled confidence that subsequent NEC models were valid and range 
measurements were consistent and repeatable. NEC-Win Pro served as a valuable tool 
for evaluating candidate antenna locations onboard naval platforms and for computing 
representative antenna parameters. 
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Abstract 

The Signal Exploitation and Geolocation Division of the Southwest Research 
Institute conducted an internal research project to determine the feasibility of numerical 
modeling for shipboard High Frequency Direction Finding (HFDF) array design. The 
Numerical Electromagnetic Code (NEC4) calculated antenna responses that were 
compared to results measured at the SwRI scale-model rotary test facility. Both 
amplitude and phase results are compared. Although the shielded loops were modeled 
as simple unshielded loops, the results are good. These results indicate that numerical 
modeling for shipboard array design is feasible. 

1. Introduction 

An HFDF system requires an array of distributed sensors. These sensors can be 
a mix of electric and magnetic elements. The response from these sensors is processed 
with a DF algorithm to provide angle of arrival and possibly elevation for a target 
emitter. The number of sensors and their placement greatly affects the performance of 
the DF system. Their placement is critical not only from a geometrical standpoint but 
also in terms of the presence of near-field scattering objects. Therefore the design of an 
HFDF array for an electromagnetically cluttered environment such as a Navy ship is a 
formidable task. 

A database of antenna responses has been compiled for an HFDF array installed 
on the U.S. Navy CG-47 Ticonderoga class of ships. The sources of this database 
include two Navy ships, a 1/48* brass scale-model, and a NEC model. The NEC model 
was developed to determine the feasibility of using numerical modeling to design 
shipboard  HFDF arrays  prior to  installation  on   the   scale-model.     A  detailed 
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examination of the individual antenna responses indicates that numerical modeling is 
indeed a feasible design tool and that the CG-47 wire grid model performed well. 

2. Shipboard HFDF Crossed-Loop Antenna 

For the application in this paper, a unique antenna was used consisting of two 
orthogonal electrostatically shielded loops and a monopole. The loops are intended to 
sense two components of the magnetic field while the monopole senses the electric 
field. The loop elements are connected to matching networks installed in the base of 
the antenna. They are fed at the bottom and the electrostatic shield gap is at the top. 
The loops are approximately square and 0.6 meters on each side. The monopole is a 
simple wire element fed at the bottom of the loops without a matching network. A 
fiberglass tube running through the center of the loops supports the monopole. The 
monopole is approximately 1.5 meters long. The antenna has three outputs, one for 
each element. There are typically six antennas installed on each ship and 18 sensor 
inputs for the DF system. The operating frequency of the antenna is 0.5 - 30 MHz. 

HF/DF Antenna Typical shipboard installation 
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3. NEC Model 

A wire grid model was developed of the full Ticonderoga class ship. The model 
was developed to run on a Pentium Pro 200 with 256 Mbytes of memory and was 
gridded for 15 MHz. This meant the segment spacing was typically 2 meters and the 
segment radius was approximately 0.32 meters. These parameters meet NEC's general 
guidelines for equal area. The bow and stern are built with a coarser gridding to reduce 
the total number of segments. The full model contains approximately 3400 segments 
and requires 190 Mbytes of memory. Each frequency run required 2.5 hours. A 
frequency run provides responses for a full 360-degree azimuth sweep at one 
frequency. GNEC software and NEC version 4 were used. 

Full NEC wire grid model ofCG-47 NEC model ofHFDF antenna 

The main hull section was gridded using the Structure Interpolation and 
Gridding (SIG) program [ref. 1]. This program automatically grid surfaces based on a 
set of cross section contours. About 50 percent of the model are symmetrical and 
therefore produced with the GX (reflection in coordinate planes) card in NEC [ref. 2]. 

Three-dimensional visualization of the NEC model was accomplished with POV- 
Ray for Windows. The ability to visualize the wire segments in three dimensions 
greatly enhances the ability to refine the wire grid model. It provided the opportunity 
to visually check wire radii to make sure that they met NEC modeling guidelines. 
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The loop antennas are modeled as simple loops. They are square with five 
segments on each side. The center top segment is used as a current sensor. The loops 
are slightly vertically offset so that their segments do not touch. The monopole is 
modeled as a dipole above the loops. It contains nine segments and the center segment 
is used as a current sensor. A plane wave excitation is used with 360 azimuths at 1- 
degree increments. The NEC model is oriented similar to the scale-model with the 
main mast located at the center of rotation. In this manner, the NEC calculation is 
performed in very much the same way as the range measurement. 

4. Scale-Model Measurements 

A 1/48* scale brass model of the CG-47 Ticonderoga class ship was used to 
make antenna response measurements. The measurements were conducted at the SwRI 
scale-model rotary test facility. The test facility consists of a rotating copper platform 
surrounded by a radial ground screen with a diameter of 400 feet. RF signals can be 
generated at elevation angles of 0 to 60 degrees while the rotating platform provides 
360 degrees of azimuthal positioning. All RF and control cables run underground to an 
equipment building approximately 200 feet from the rotator's center. While measuring 
the outputs of scale-model antennas as the ship is rotated, amplitude and phase data is 
recorded relative to a fixed reference antenna. Eight RF channels are available for 
simultaneous data collection of up to eight antenna outputs at a time. 

N^^g^^gJ^S^P^^SSS^'-ä 

SwRI scale-model rotary test facility 
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5. Ship Calibration Measurements 

The shipboard HFDF system requires an antenna response calibration table to 
perform accurately. This table is simply the measured response for the antennas as a 
function of azimuth and frequency. These measurements are made using a land-based 
transmitter. The ship is sailed around a buoy at sea to acquire azimuth-dependent 
antenna response measurements. This method of performing measurements is similar 
to the range measurements but there is an additional phase term introduced by the 
variation in the distance between the ship and transmitter. 

6. Results and Comparisons 

A comparison for one of the six antennas will be discussed in this paper. The 
other antennas provided similar results. The element response magnitudes are 
normalized for simplicity. This allows the ship, range, and NEC data to be plotted on 
the same scale. For DF applications this is adequate because only the relative 
magnitude and phases are of interest. Both the range and NEC phase data contain a 
predictable oscillation due to the rotation of the antennas about the origin. The ship 
data has an additional phase oscillation due to the change in the ship location. 
Therefore, the loop phase response is referenced to the monopole phase response for 
these plots. Essentially, phase shifts due to the antenna movement relative to the origin 
have been removed. This does introduce a problem if the monopole responses do not 
agree. The ship data is shown as solid line, the range data is shown as dashed lines and 
the NEC calculations are shown as dot-dashed lines. 

The Loop # 1 magnitude responses for all three data sets match well except near 
the null area around 250 degrees of azimuth. The NEC result appears to slightly favor 
the range magnitude rather than the ship magnitude. Notice that the loop no longer has 
a typical sine response but rather the pattern is dominated by its placement on the ship 
structure. The phase responses also track well. The NEC has an apparent offset of 50- 
100 degrees. Keep in mind that the ship and scale-model antennas have matching 
networks on the loop antennas that result in a phase offset between the monopole and 
the loops other than the theoretical 90 degrees. Given this fact, the NEC phase tracks 
well with the measured data. In general the two orthogonal loops will have similar 
amplitudes and phases once they are placed on the ship. This indicates that the antenna 
is sensing primarily the currents on the hull rather than from the incident field. 
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Loop # 1 Normalized Magnitude O 5.3 MHz Loop # 1 Phase referenced to Monopole • 5.3 MHz 
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The magnitude responses for Loop # 2 also match well. Note that using the 
monopole as the phase reference raises the question as to which antenna is causing the 
difference in the phase results. Once again, the NEC magnitude response appears to 
favor the scale-model magnitude response. 
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The magnitude response of the NEC modeled dipole also compared well to the 
measured monopole responses. Since the monopole is used as the phase reference, the 
phase plots result in a constant phase of zero. 

Monopole Normalized Magnitude @ 5.3 MHz 

IA 
- Anzio 
- Scale 
-NEC 

Normalized Magnitude Response 

7. Conclusions 

The NEC magnitude and phase responses for the 18 elements of the HFDF array 
compared favorably to the ship and scale-model measured data. For DF applications, 
only the relative magnitudes and phases are required. Therefore, it is not necessary to 
accurately model the impedance or absolute gain. Related research has shown that the 
results presented here provide very good DF performance estimations. Numerical 
modeling has proven to be a useful tool for use in predicting DF performance for 
various HFDF array installations. 
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Abstract 

Near-earth and buried antennas for HF (1.8 - 30 MHz) communication applications 
may be very accurately analyzed by computer implementation of an analytic model, 
independent of sophisticated NEC-3 or NEC-4 kernels. This paper describes a specialized 
MATLAB computer program, named SNAKE1, which models the feedpoint impedance, 
VSWR, pattern shape and power gain for single-element near-earth and buried wire 
antennas. The program requires the user to provide the characterization of the soil 
conductivity a and dielectric constant er where the antenna is deployed. The governing 
analytical equations for the model are believed to be useful between approximately 1 kHz 
to 100 MHz, so other applications in addition to HF antennas are possible. Because it has 
comparable accuracy, executes quickly, and may be distributed freely without restriction, 
SNAKE1 is an attractive alternative to NEC for this particular class of antennas. 

1    Introduction 

The amateur radio service and other practical radio communicators using the HF spectrum 
(nominally extended to mean 1.8 - 30 MHz here) have multiple interests in near-earth and 
buried single-element wire antennas. Near-earth dipole and traveling-wave antennas are very 
portable and quickly deployed. They can be particularly effective for NVIS (near vertical 
incidence skywave) communications over short links. It also turns out that they are effective 
radiators of end-fire vertically polarized fields at low takeoff angles. 

Further, the potential utility of these so-called snake antennas, a term which encompasses 
both near-earth and buried deployments, for the selective reduction of objectionable static 
interference at frequencies up through the 40-meter band (7 MHz) was discussed in [1], where 
most of the basic components for an analytical model are archived for convenient reference. 
The remainder of the analytical model was documented in [2]. The governing equations in 
[1] and [2] are based on the excellent work results reported in references [3] and [4]. 

It is assumed that the near-earth or buried wire is straight, and aligned along the x-axis 
as illustrated in Figure 1. 4> denotes azimuth angle, measured CCW from the +x axis. 6 
denotes elevation angle, with 0 = 0 representing the air-earth interface, referred to as the 
horizontal plane. 

Because MATLAB [6] has become the premier software package for interactive numeric 
computation, data analysis, and graphics at numerous academic institutions, and is also 
gaining widespread acceptance in industry, a computer implementation for the snake antenna 
model was carried out in MATLAB. 
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The program SNAKE1 was developed to promote academic pursuits of computer-based 
modeling and experimentation by amateur radio enthusiasts and other practical radio com- 
municators actively using the HF spectrum. Both end-fed and center-fed configurations, as 
shown in Figure 2, are handled by the program. SNAKE1 calculates feedpoint impedance 
and VSWR characteristics and plots antenna patterns; power gain in dBi, as well as pat- 
tern shape, are accurately described by the model over the entire HF band. The user may 
specify an elevation or azimuth plot, with a choice of either vertical (E8) or horizontal (E<fr) 
component, for each program execution. 

Earth (real ground) permittivity is frequency dependent, but often it is the case that the 
dielectric constant and conductivity are known at just one frequency. Formulas which allow 
a reasonable approximation of the frequency dependence based on data at a single frequency 
are included in SNAKE1. 

The program has been validated by comparisons to NEC-3 modeling results and to pat- 
terns contained in [5]. As noted in [1], the Eyring Communications Division was developing 
advanced buried antenna modeling and hardware products for several years before they 
ceased operation in the early 1990s. The SNAKE1 program was developed independently, 
from governing mathematics available in the scientific literature, and is intended for indi- 
vidual academic pursuits only. Comparisons of several SNAKE1 results to illustrative plots 
published in [5] show acceptable and consistently close, but not exact, agreement. The the- 
oretical equations may be manipulated into different forms for computer implementation, 
and it is believed that the observed small discrepancies follow from the implementation of 
slightly different equations. 

2 Modeling Geometry- 

There are four basic antenna element configurations, as shown in Figure 2. In all four cases, it 
is assumed that the wire axis is aligned with the x-axis. Two variations of the basic antenna 
element are end-fed, one of which is open-terminated and the other ideally match-terminated. 
The other two variations are center-fed, similarly with one version open-terminated and the 
other match-terminated. 

For the power gain calculations to be realistic, feedpoint mismatch losses are taken into 
account. It is assumed that a balanced transmission line is attached to the two feedpoint 
terminals, for all the center- and end-fed variations. The source impedance specified to the 
program should be that of the transmission line. If a source impedance of 450 Q is specified 
to the program while the actual transmitter output impedance is 50 fi, for example, it is 
tacitly assumed by the program that the user will employ a 9:1 balun on the transmitter 
output to achieve the conversion from a 50 fi unbalanced to a 450 JJ balanced feed. 

Figure 1 identifies some parameters relevant to computation and plotting of radiation 
patterns. Note that the elevation angle 0 is measured relative to the horizontal plane, that 
the E9 field component is taken by definition to be the vertical polarization component, and 
that the E<f> field component is similarly taken to be the horizontal polarization component. 
The program, in its present form, can plot both azimuth and elevation radiation patterns for 
either vertical or horizontal polarization. 
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3    Program Operation 

The SNAKE1 program interactively prompts the user to input the necessary parameters for 
program execution. Brief remarks on each of the major program setup steps follow: 

1. FEED TYPE: center or end feed. 

2. TERMINATION: matched or open termination of the antenna element. 

3. FIELD OF INTEREST: skywave or groundwave. 

4. COMPONENT OF INTEREST: vertical or horizontal. 

5. FREQUENCY RANGE OF INTEREST (MHZ): either a single frequency (scalar en- 
try) or a vector spanning the range of frequencies of interest. 

6. GROUND PARAMETERS: Default values of er = 10 and er = 5 mS/m may be ac- 
cepted or changed interactively in response to user prompts. 

7. VARY GROUND PARAMETERS WITH FREQUENCY? Allows the user to specify 
yes or no. If yes is specified, the user is prompted to input the single REFERENCE 
FREQUENCY in MHz. 

8. WIRE RADIUS AND INSULATION RADIUS: Default values of 0.001 and 0.005 m, 
respectively may be accepted or changed interactively in response to user prompts. 

9. ANTENNA LENGTH L IN FT OR M? Allows the selection of meters or feet for input 
of antenna element length. 

10. INPUT LENGTH OF ANTENNA ELEMENT: Note from Figure 2 that input length L 
is the full length of the end-fed elements, but is half the overall length of the center-fed 
variations. That is, the overall length of the center-fed variations is 2L. 

11. ANTENNA HEIGHT IN M: Heights above ground for near-earth elements are positive; 
for buried antennas, this entry is a negative number. 

12. FEED LINE IMPEDANCE IN OHMS: A balanced transmission line feed is assumed, 
as discussed earlier. Father, if this value is specified as 0, the program does not compute 
and take into account mismatch loss. 

After these entries, the program will compute and display the following summary informa- 
tion for each frequency of interest: frequency, ground dielectric constant, gamma (/? — ja) 
per [1], antenna feedpoint impedance, line characteristic impedance, reflection coefficient 
magnitude, VSWR, and mismatch loss (where selected). At the conclusion of this tabu- 
lation, the user is offered an opportunity to (13) DISPLAY A FEED-POINT SUMMARY 
TABLE and, after that, the opportunity to (14) PLOT VSWR VERSUS FREQUENCY. 

Finally, the pattern plotting options are selected: 

15. 0 = AZIMUTH PLOT, 1 = ELEVATION PLOT, 2 = NO PLOT. 

16. If 'azimuth plot' is selected, the user is prompted to input the desired elevation angle 
(in degrees). If 'elevation plot' is selected, the user is prompted to input the desired 
azimuth angle. 
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4    Illustrative Results 

The impedance and mismatch results of two test cases are summarized in Table I below. 
These typical values both illustrate the impedance levels to be expected in applications, and 
provide numerical values that independent programmers can use for comparison. The snake 
of Example 1 is deployed above, but near ground, at a height of 1.0 m. For Example 2, the 
antenna element is buried at a depth of 0.5 m. 

Table I. Summary of impedance and mismatch examples. 

Description Example 1 Example 2 
Input Parameters: 

Frequency (MHz) 10.0 10.0 
Soil dielectric constant 10 4 
Soil a in mS/m 5 5 
Wire insulation dielectric constant 5 2.25 
Wire insulation a in mS/m 0 0 
Length of antenna element in m 20 13.4 
Wire radius o in m 0.001 0.003175 
Insulation radius b in m 0.005 0.0127 
Transmission line impedance fi 600 300 
Feed (c=center, e=end) c c 
Termination (o=open, m=matched) 0 o 
Field (s=sky, g=ground) s s 
Component (v=£'e, h=E$) v V 

Vary ground parameters/ref. MHz? no no 
Wire height z (m); -z —* buried 1.0 -0.5 

Outputs: 
7 = ß - ja 0.2370-J0.0180 0.5252-J0.1867 
Line char, impedance ZAC 515.79-j39.27 159.11+J13.58 
Ant. feedpoint impedance Zin 359.03-j2.496 318.82+J22.90 
Reflection coefficient magnitude |r| 0.2513 0.0479 
VSWR 1.6712 1.1005 
Return loss (dB) -11.917 -26.400 
Mismatch loss (dB) -0.2832 -0.0100 

Example 1 was subsequently re-run with the frequency entered as a vector running from 2 to 
32 MHz in steps of 0.66 MHz. The program was instructed to vary the ground parameters 
with frequency, taking the values above as true at reference frequency 10.0 MHz. Figure 
3 shows the graphical result, and clearly indicates the potential for broadband operation. 
The small glitch in the VSWR curve near 14 MHz is because |fc2^| becomes equal to one 
in that vicinity, and the two above-ground element propagation constant approximations do 
not meet seamlessly at the transition point. 

In addition, radiation pattern plots for another four test cases are reported here. Table H 
summarizes the important details of these illustrative cases. Two computer runs were made 
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Figure 1. Basic snake antenna geometry. 
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Figure 3. VSWR 3-32 MHz for the antenna of Example 1. 
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for each case - first using the positive z (wire height) value indicated in Table II, and then 
with z = -0.5 m, also indicated on the same line of the table. 

Table II. Summary of four radiation pattern examples. 

Description Example 3 Example 4 Example 5 Example 6 
Frequency (MHz) 10 8.015 8.015 8.015 
Soil dielectric constant 10 9.5 9.5 9.5 
Soil <r in mS/m 5 6.7 6.7 6.7 
Wire insulation dielectric constant 5 2.7 2.7 2.7 
Wire insulation a in mS/m 0 0 0 0 
Length of antenna element in m 20 22.86 22.86 22.86 
Wire radius a in m 0.001 0.0008 0.0008 0.0008 
Insulation radius 6 in m 0.005 0.0012 0.0012 0.0012 
Transmission line impedance fi 450 450 450 450 
Feed (c=center, e=end) c c c c 
Termination (o=open, m=matched) o o o o 
Field (s=sky, g=ground) s s s s 
Component (v=E&, h=E$) V V h V 

Vary ground parameters/ref. MHz? no no no no 
Wire height z (m); -z —► buried 1.0/-0.5 0.66/-0.5 0.66/-0.5 0.66/-0.5 
Plot v elev. v elev. h elev. v az. 
©/<& conditions on plot * = 0° $ = o° $ = 90° © = 30° 

The resultant radiation patterns are in Figures 4 through 7. The reader is reminded that 
the computer program includes mismatch loss into the computed gain patterns, unless a 
transmission line impedance of zero is specified, in which case mismatch loss is ignored. For 
brevity, a detailed commentary on the figures is omitted; clearly, however, single-element 
near-earth and buried antennas are often in the operational regime -15 dBi to -25 dBi for 
practical HF deployments. 

5    Conclusions and Future Research 

A computer-based capability, using MATLAB, for the sinusoidal steady-state analysis of near 
earth and buried single (insulated) wire elements has been developed. It is intended that the 
code developed for this application will be freely distributed to support academic research 
into this interesting class of low-frequency antennas. 

The ability to predict impedance conditions and radiation patterns for snake antennas 
is of considerable interest to practical radio communicators. The relatively low power gains, 
compared to isotropic, are not necessarily objectionable for 'receive only' and certain tranmit 
applications. Incorporation of signal angle-of-arrival considerations is planned for a future 
program upgrade. 

Future work will also incorporate provision for arrays of near-earth and buried elements. 
The additional gain provided by arraying these basic antenna elements may broaden the 
scope of practical transmit applications. Also, an experimental measurement program to 
quantify the selective rejection effectiveness of these antennas for both local man-made noise 
and distant, naturally occurring static sources is planned for the future. 
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Figure 4. Gain versus elevation for Example 3, <|> = 0° 
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Figure 5. Gain versus elevation for Example 4, <|> = 0° 
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Figure 6. Gain versus elevation for Example 5, fy = 90° 

Solid line Z = 0.66 m 
Dashed line Z = -0.5 m 

Vertical Polarization Maximum = 0 dBi 
10 dB/division 

Figure 7. Gain versus azimuth for Example 6, 0 = 30° 
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ABSTRACT 

Short duration electromagnetic pulses created by a high-altitude nuclear event can cover an immense 
geographical area with peak field strengths in excess of 50 kV/m. The induced voltages and currents 
from this short duration pulse are capable of disabling communications by destroying susceptible 
semiconductors within radio equipment. It is important to be able to predict the induced antenna 
currents to determine the potential threat and protection mechanism for communication systems. 

A crossed dipole antenna was subjected to non-ionizing electromagnetic transient energy that 
simulated a high-altitude nuclear event. The crossed dipole antenna was connected to a 
microprocessor controlled antenna coupler and radio. This paper compares these empirical results to 
numerically predicted data. 

Predicted data based on a previously published numerical technique was first considered. This 
technique was enhanced by adding a correction factor to retain the initial conditions at time equals 
zero. A comparison of measured and predicted input impedance is presented. The empirical technique 
follows, starting with the test set-up and pulser antenna details. The electric and magnetic field data 
collected, both spectral and temporal, with and without the test antenna is presented and discussed. 
Next the currents induced onto the crossed dipole antenna and delivered to the antenna coupler are 
discussed. Finally, the currents that passed through the antenna coupler are discussed. Direct 
comparisons of the predicted data to measured results are complicated, due to the difficulty providing a 
short-duration pulse waveform with correct characteristics. However, the empirical created waveform 
does provide useful insight into induced currents and potential threat to a communication system. 

NUMERICAL TREATMENT 

The numerical approach1 involves calculating an antenna's plane wave response using the Numerical 
Electromagnetic Code2 (NEC). A one Volt/meter plane wave excites the wire-grid antenna model 
every 250 kHz (corresponds to the desired sampling rate in the time domain) across the frequency 
band from 250 kHz to 100 MHz. The calculated plane wave response is multiplied with the Discrete 
Fourier Transform (DFT) of the generalized high-altitude EMP double exponential transient 
waveform. The result of this spectral multiplication is the predicted short-circuit current response of 
the antenna when it is subjected to an incident EMP transient. The short-circuit transient response 
current is obtained by complex Inverse DFT (IDFT). 

The short-circuit current when combined with the complex antenna input impedance in the frequency 
domain can be converted to an open-circuit Thevenin voltage. With the antenna represented as a 
Thevenin voltage source and source impedance, the voltage transfer to any arbitrary load can be 
calculated. Applying a complex IDFT provides the transient response across the load. 

The numerical technique' presented last year was applied to five antennas: a simple dipole, a fan 
dipoie, a crossed dipole, a whip with ground radials, and a sloping VEE. Of the five antennas, not ail 
transient responses started at time equals zero, but tens of nanoseconds earlier. This error is introduced 
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EXPERIMENTAL TREATMENT 

A radio system that includes a 
crossed dipole antenna, 
antenna coupler, and 
transceiver was exposed to 
electromagnetic pulse 
simulation. The antenna 
height (8.7 meters) required a 
simulator with the minimum 
pulser height of 27 meters. 
This factor of three is typical 
to limit coupling between 
pulser antenna and the test 
antenna. The Electromagnetic 
Transients Branch, NAWCAD, 
Patuxent River, Maryland 
Electromagnetic Pulse Test 
Facility had a suitable site4. 

This   facility   has   a   hybrid 
simulator5, 6'7 which combines various features of radiation simulators and static simulators. 

5 10    FrequeJ&y, MHz 

Fig. 2. Measure and Modeled Feed Point Impedance 

This 
hybrid simulator provides both the early-time (high frequency) portion of the waveform radiated from 
the source region and the late-time (low-frequency) portion of the waveform radiated over the entire 
pulser antenna. The hybrid simulator at NAWCAD included a ground plane as part of the pulser 
antenna. This includes the ground reflected pulse, an important component of the simulation in respect 
to testing antennas. 

The test antenna was deployed directly below the pulser antenna as shown in Figure 3. Field strength 
measurements  were  gathered  at  5.5 
meters above the ground plane with and 
without the antenna.    The x-directed 
magnetic field, H„ and the z-directed 
electric field, E2, were measured.   The 
z-directed   electric   field   is  not   the 
primary field.   The primary field is Ey 

aligned with the pulser antenna.   Data 
for Ey was taken, but a fiber optic 
transmitter  failure prevented reliable 
data.   With the crossed dipole antenna 
under the pulser antenna, H, and Ex 

were measured.   Current probes were 
used to measure the current induced on 
the    crossed   "dipole    antenna    and 
delivered to the antenna coupler and the 
current delivered to the radio. 

777777?77s7777Z?7777y7777777777?77~ 
Fig. 3. Crossed Dipole System Test Configuration 
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in the frequency domain when the Numerical Electromagnetic Codes (NEC) computes the complex 
short circuit response to a unit plane wave. If the phase center of the antenna was aligned with the 
Cartesian coordinate center no error was introduced. As the phase center of the antenna moved away 
from the coordinate center, a phase error was introduced. This translates to a time error equal to the 
time for energy to travel the distance between the coordinate center and the phase center of the 
antenna. This results in the transient response appearing to start in negative time. This problem of 
phase reference to the coordinate center is inherent to the NEC algorithm. A correction factor versus 
frequency was added in MATHCAD3 to subtract the phase difference between coordinate center and 
phase center of the antenna. With the phase corrected plane wave response, successive DFT and IDFT 
still have transient starting at time equals zero. 

The antenna that underwent extensive measurements was the extended crossed dipole. This antenna is 
an extended version of the AS-2259/U that includes an 8.7 meter coaxial mast that supports two 
unequal sets of dipole elements mounted at 90°. 

The predicted current transient response for the crossed dipole antenna is a damped exponential 
sinusoidal as displayed in Figure 1. One curve is when the antenna is grounded and the other is when 
the antenna is connected to an antenna coupler tuned to 8.4 MHz. The waveform reaches 900 
Amperes peak current when connected to the tuned antenna coupler and 1350 Amps when connected 
to a short circuit. Sinusoidal 

Current (Amps) oscillations occur every 170 
nanosecond (ns.) for a 
resonant frequency of 5.9 
MHz. The EMP 10 ns. rise- 
time has significantly 
decreased to 60 ns., due to the 
bandpass nature of the 
antenna, which attenuates high 
frequency components. Both 
waveforms have oscillatory 
behavior at about 6 MHz, but 
decay at different rates. Tne 
short circuit termination has 
the longer decay time. 

Figure 2 displays the 
measured       and      modeled 
crossed dipole antenna's feed point impedance. The two lower curves represent the resistance and the 
two upper curves are the absolute value of the reactance. This figure exemplifies the ability to 
accurately model antenna impedances with NEC. The reactance zero crossing indicates the long 
elements are resonant at 6 and 18 MHz, while the short elements are resonant at 9 and 27 MHz. The 
transient response frequency agrees with the longest element resonant frequency. The analysis and 
testing were both performed with the longest element aligned with the polarization of the incident 
EMP wavefront. 

no 

Fig. 1. 

6-10  ' 8-10 
Time (seconds) 

Crossed Dipole Current Transient Response 

1.2-10      1.4-10 
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The pulser must always be triggered at 50 kV/m peak due to difficult timing issues creating the fast 
rise-times required. To ramp up to the 50 kV/m threat level, the crossed dipole antenna was placed at 
predetermined distances from the pulser's center. Resulting in exposure levels of 15 kV/m, 25 kV/m, 
and50kV/m. 

ELECTRIC FIELD 

At these three locations, the electric field Ez(f) at 5.5 meters above the ground plane without the 
crossed dipole antenna is shown in Figure 4a. The logarithmic frequency scale covers four decades 
from 100 kHz to 1GHz. The amplitude is relatively flat below 1 MHz at -40 dBV/m/Hz (0.01) which 
agrees very well with the numerical results. The relative amplitude on a per Hertz basis decreases as 
the distance to the pulser's center decreases, but the spectrum shape is almost identical. All the 
spectral plots are increasingly noisier at higher frequencies. The starting frequencies of noise 
correlates with inverse distance. Directly below the pulser's center a noise free spectrum up to 20 
MHz is obtained. At the furthest distance, 33m, noise starts at 13 MHz. The noise level is 40 dB 
below the signal peak. The noise is introduced from limited dynamic range of the measurement 
system in the time domain. 

The time domain plots, ez(t), for the spectrums are displayed in Figure 4b. The curves are shifted in 
time to plot the them closer together. All three curves approach 30 kV/m with a quick rise-time after a 
slow 200 ns. ramp. A 80 ns. delay was expected, the additional 120 ns. is due to time delays 
associated with the measurement system. Each curve shows a second, third, and a trace of a forth 
peak, then a slow decay that approaches zero. The second peak appears merged with the first peak at 
the furthest distance. As the probe approaches the pulser's center the peaks separate and the second 
and third peaks decrease. These extra peaks are due to the reflection from the pulser antenna's ends. 
The time span between successive peaks is 800 ns. or 1.25 MHz. This frequency component can be 
seen as a slight peak on the spectrum plots. 

At the same three measurement locations, the crossed dipole antenna was placed for free field and 
current measurements. The x-directed electric field, Ex(f), at 5.5 meters above the ground plane is 
shown in Figure 5a. 

uxamDE (v/x/is] 

1 
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i 

|    i -s^_ j HMNIn 
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:      50kV/m wmr*s 
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| —rlW 
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(a) Spectral Response, Ez(f),                                   (b) Temporal Response, ez(t) 
Fig. 4. Electric Field at Three Location under the Pulser's Antenna  
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The amplitude peak at 1 MHz does not achieve -40 dBV/m/Hz with this component of the E-field or 
the field is perturbed by the crossed dipole antenna. Clearly, the amplitude of each spectral component 
varies across the spectrum with low amplitudes at 4 and 30 MHz and high amplitudes at 1 and 17 
MHz. The same features are seen at the location that delivered 25 kV/m. Directly under the pulser, 
many low and high amplitude spectra appear: lows at 4, 25, 51, and 79 MHz, highs at 10, 17, 36, 62, 
and 90 MHz. This indicates strong interaction or coupling between antennas. Noise is still present, 
the signal to noise level is only 30 dB but occurs above 50 MHz. 

The time domain plots, ex(t), for the spectrums are displayed in Figure 5b. The time scale covers 1 u.s. 
Each curve shows a 180 ns. delay, then a fast rise-time to a peak. Then a fast rising negative peak 
which is the ground reflected pulse. Three to four oscillations occur before the electric field 
approaches zero. The oscillation frequency is 16.7 MHz. 

<"—»"■!»>■»■<*'** 

nzqozscr Eaz] 
(a) Spectral Response, Ex(f) (b) Temporal Response, ex(t) 

Fig. S. Electric Field at Three Location with Crossed Dipole under the Pulser's Antenna 

There is a significant difference in the electric field response when the crossed dipole antenna was 
included in the measurements. We have compared E2 to E„, where the normal field, E2, does not have a 
ground reflected pulse. However, the tangential field, Ex, provides a ground reflected pulse with 180° 
phase reversal. It is unfortunate that the same component was not measured for each case. The same 
component was measured for the magnetic field. 

MAGNETIC FIELD 

The tangential magnetic field, Hx, was examined for its response when the crossed dipole was 
introduced. Figure 6 displays Hx for the 50 kV/m level with and without the crossed dipole antenna. 
Both time response curves do not have a ground reflected pulse, as expected for a tangential magnetic 
field. The curves are different, particularly the amplitude and duration of the second peak. In the 
spectral domain, the curves display the same typical effects of frequency selectivity when the crossed 
dipole antenna was introduced. The exact locations of the low and high amplitudes have shifted; lows 
at 10,40, and 65 MHz, and highs at 1,15, 52, and 90 MHz. 
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(a) Spectral Response, Hx(f) (b) Temporal Response, hx(t) 
Fig. 6. Magnetic Field With and Without the Crossed Dipole Antenna 

ANTENNA CURRENT 

Current delivered to the antenna coupler by the crossed dipole antenna was measured with a current 
probe and the results are shown in Figure 7. At the furthest location, equivalent to a 15 kV/m EMP 
level, the peak current approached 400 amps. The temporal trace is rather noisy, believed to be caused 
by voltage arcing. The spectrum has a minimum at 5.5 MHz, but the maximum current was expected 
at the resonant frequency of 5.8 MHz. The maximum current was at 12 MHz, this frequency correlates 
to two way travel time the length of the long element. 

When exposed to 25 kV/m EMP peak level, a peak of 275 amps was delivered to the coupler that 
decayed in four cycles. At 50 kV/m exposure, the coupler saw a 250 amp peak decaying over 8 cycles. 
The spectral curves reveal that as the peak exposure level increases, or as the crossed dipole 
approaches the pulser's center, all frequency components decrease except for 12 MHz. 
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(a) Spectral Response, 1(f) (b) Temporal Response i(t) 
Fig. 7. Current Induced on the Crossed Dipole and Delivered to the Antenna Coupler 
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The coupler has a gas-filled spark-gap for transient protection. The spark-gap shunts all received 
energy to ground if the voltage increases beyond a preset threshold, 7 kV. At 50 kV/m exposure level 
the current decay time increases. This increase in decay compares well to theory (Figure 1) when the 
antenna is shorted, indicating that the transient protection device triggered to protect the coupler's 
sensitive semiconductors. 

Comparison of predicted results with empirical data shows that the predicted peaks are higher by a 
factor of two to three. The reason for this is the exciting waveshape is different, the theoretical pulse is 
a smooth double exponential with pure polarization aligned with the long dipole elements. Whereas, 
the empirical pulse creates an electric field distributed among all three electric field components. 
Therefore, the numerical model represents the worst case scenario. In the actual scenario, a high 
altitude electromagnetic pulse would approach a plane wave. Therefore, the numerical simulation is 
more representative, on the other hand the polarization tilt is unknown. 

Comparing the primary measured frequency content was 12 MHz and 6 MHz predicted. Whereas the 
coupler's      tuned       frequency 
component at 8.4 MHz was not 
evident.  A numerical model was 
used to examine the response of 
linear polarized  waves  aligned 
with the long and short elements 
independently.    Figure 8 shows 
the relative    current magnitude 
received on the antenna.    Both 
polarizations    received    current 
peaks at 5, 8, 12, and 24 MHz; 
the long elements also received 
20 MHz and rejected 30 MHz, 
while the short elements rejected 
20 MHz and received 30 MHz. 
The greatest predicted peak is 5 
MHz with the peaks at 8 and 12 
MHz being 3 dB down. 

1 
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Fig. 8. Relative Current Received from Linearly Polarized Plane 

Waves Aligned with the Long or Short Elements 

CURRENT OUT OF THE COUPLER 

A current probe was placed on the center conductor of the coaxial cable which connected the antenna 
coupler to the transceiver. Shown in Figure 9, at 15 kV/m level, the current appears to be a summation 
of several frequency components with the primary one being 45 MHz. The spectrum plot reveals the 
main frequency content is centered on 45 MHz and 90 MHz. These components are harmonically 
related and pass through the coupler. The coupler must therefore have a bandpass response at 45 and 
90 MHz when tuned for 8.4 MHz operation. 

At the 50 kV/m level, directly under the pulser antenna, the current had a peak of 12 Amps with a 
fundamental frequency of 22 MHz, harmonically related to 45 and 90 MHz. This current plot appears 
to be created by a single excitation and rings while it decays. The single excitation is the energy that 
passed into the coupler before the transient spark-gap triggers. 
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(a) Spectral Response, 1(f) (b) Temporal Response i(t) 
Fig. 9. Current That Passed Through the Antenna Coupler 

CONCLUSIONS 

An enhancement was provided to the numerical approach that reestablished correct initial conditions. 
An input impedance comparison between numerical and measured data validated the wire-grid model. 
Clearly, the crossed dipole antenna introduction perturbed the electromagnetic fields created by the 
hybrid simulator. This caused difficulty in the comparison with the predicted data, the antenna source 
waveforms are different. The predicted induced current peak values are double the empirical values, 
which represents the worst case. The most interesting feature was the current's spectrum delivered to 
the antenna coupler. Along with the expected antenna resonant components there was also the anti- 
resonant component with a higher peak value. The coupler's tuned nature did not have any visible 
effect on frequency preference. Comparisons of the current's damped oscillatory decay time were 
good. The increased decay time at 50 kV/m level implies that the transient protection device triggered 
and protected sensitive semiconductors. The current that passed through the coupler was always 
limited to 12 amps, this also provided indication that the transient protection device triggered. 

Overall, the combination of NEC and MATHCAD provides a reliable tool to predict the worst case 
voltages and current induced on complex antennas when subjected to short duration electromagnetic 
pulses. 
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Abstract 
The traditional view of a vertical considers 

ground to be an integral part of the antenna. 
This paper suggests the use of an alternate 
viewpoint in which the vertical is a loaded, 
asymmetrical dipole in proximity to ground. 
The purpose for doing this is to visualize a 
much wider range of possibilities for a given 
situation and perhaps arrive at solutions which 
are simpler and less expensive than the 
traditional A/4 wave vertical with 120 long 
radials, but are competitive in performance. 

Introduction 

The grounded vertical is one of the earliest radio 
antennas and is widely used today by amateurs, 
particularly for 80 and 160 meters. VHF verticals 
with "ground planes" are also widely used. The 
traditional way to visualize this antenna is to 
include ground as in integral part of the antenna - 
in effect supplying the "missing" part of the 
antenna since, at low frequencies at least the 
vertical portion of the antenna is usually less than 
A/2. Even when the antenna is not grounded but 
raised above ground we still use the terms 
"elevated ground system", "counterpoise ground", 
"ground plane", etc, etc. In this view we retain the 
concept that ground is an integral part of the 
antenna and that an ungrounded vertical must 
have some structure which replaces the "real" 
ground. While this conceptual framework has 
served us well for over 100 years it tends to limit 
our thinking to more traditional solutions. A change 

in viewpoint might expose useful variations better 
suited for particular applications. 

The traditional view is that a A/4 vertical with a 
ground system of 100 or more, long radials is the 
ideal and that anything else is an inferior 
compromise. Recent workM using primarily NEC 
modeling, has indicated that elevated ground 
systems with only 4 to 8 A/4 radials are very 
competitive with the more traditional 120 buried 
radial antenna. However, elevated radial systems 
have their own drawbacks such as non-uniform 
radial currents!3!, which lead to asymmetrical 
patterns and perhaps increased loss, and the need 
for an isolation choke at the feedpoint A network 
of wires, X/2 in diameter, suspended above ground 
may be even more trouble that simply burying the 
wires. There is good reason to believe that the 
traditional A/4 radials used in elevated ground 
systems are a poor choice!34] and other 
arrangements may be superior. 

Most amateurs are severely limited by available 
space and the cost of towers and extensive ground 
systems. The traditional buried radial or even the 
elevated A4 radial systems are frequently not 
possible. What is needed is a wide range of 
choices for the antenna structure from which to 
chose those best suited for a given situation. In as 
far as possible the final design should sacrifice as 
little performance as possible. 
An alternate way to look at verticals was suggested 
by Moxon!4!: 
1)The antenna is a shortened (<%A) vertical dipole 
with loading. The loading may symmetrical or 
asymmetrical. The loading may be inductive, 
capacitive or a combination of both.  Usually the 
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loading contributes little to the radiation although 
some loading structures may radiate. 

2) Ground is not part of the antenna but the 
interaction between ground and the antenna must 
certainly be taken into account This includes both 
near and far field. 

This seems a trivial conceptual change but 
looking at a vertical as a short, loaded dipole rather 
than a grounded monopole, opens up possibilities 
not usually considered with the more traditional 
point of view. 

Loaded Dipoles in Free Space 

One of the simplest ways to load a shortened 
dipole is to add capacitive elements or "hats" at the 
ends as shown in figure 1. As indicated in figure 1, 
the feed point may be anywhere along the 
radiating portion of the antenna. Figure 1 shows 
symmetric end loading. Figure 2 gives an example 
of extreme asymmetric loading where only one 
capacitive loading structure is used. This is of 
course the familiar ground-plane antenna being 
viewed as an asymmetric dipole. Actual antennas 
can vary between these two extremes, adjusting 
the size of the loading hats to suit a particular 
application. 

When the vertical portion of the antenna (h) is < 
W4, top loading is quite commonly employed. 
However, top loading is usually not considered 
when h > W4 or more is used. This may be due to 
our past view that we need an extensive set of 
buried radials or equivalents an elevated system 
of W4 radials which "complete the antenna'. In 
fact there are compelling reasons for adding some 
form of top loading or inductive loading even if the 
vertical section is a full XJA. For a W4 vertical the 
diameter of the radial system will be * W2, 
changing only slowly as the number of radials is 
varied. On the other hand, if we lengthen the 
vertical section beyond W4 or add some top 
loading or even some inductive loading, the 
diameter of the radial structure drops rapidly, 
seemingly out of proportion to the added loading. 

Figure 1, Short loaded dipole 

Figure 2, Asymmetrical dipole 

A simple example that illustrates this point is 
given in figures 3 and 4. Figure 3 shows an 
asymmetrical 114 dipole with two radials (Li and 
L2) at each end. L.2 is varied from zero to 22.3' and 
Li readjusted to resonate the antenna at 3.790 
MHz. Clearly the addition of even a small amount 
of top loading (L2) greatly reduces the length of the 
bottom radials (Li) and consequently the land area 
required for installation. This is a matter of 
considerable practical importance to those with 

1037 



restricted space in which to erect an antenna. With 
somewhat more complex loading elements the 
footprint can be reduced even further. 

In addition to greatly reducing the length of 
the radials a number of other things happen during 
the above exercise: 

L2 

h=64' 

L1 

Figure 3, Asymmetric two radial dipole. Fr = 3.790 
MHz 
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Figure 4, Effect on radial length of top loading 

1) With only two radials and no top loading, the 
radiation pattern will vary with azimuth by 
about .7 dB, making the pattern slightly oval. 

This pattern asymmetry essentially disappears 
as the radials are shortened. 

2) When placed over ground, the current in 
individual W4 radials will rarely be equal. This 
can lead to asymmetric patterns and increased 
loss. The current asymmetry rapidly 
decreases as the radials are shortened. 

3) The peak gain and the angle at which it 
occurs, changes relatively little as top loading 
is added and the radials shortened. 

4) Small amounts of inductive loading could also 
be used to supplement or even replace the top 
loading. As long as the vertical section is 
close to W4, the radials lengths can be 
reduced to W8 without seriously increasing 
losses. 

Modeling Issues 

The realization that everything, from the length of 
the radiator to the type and distribution of loading, 
is a potential variable which may be adjusted to 
achieve specific ends is a very liberating idea but it 
brings its own set of problems. Which variations 
are best for a given application? A multitude of 
questions arise when judging any particular 
variation. 

The possibilities and questions cannot be dealt 
with analytically, at least beyond an elementary 
level. The only practical way to deal with the 
variables is to systematically explore the 
possibilities with NEC, MININEC or other CAD 
modeling software. But even that is not a simple 
matter. Each modeling program has particular 
strengths and weaknesses that affect its use for 
this problem. The bottom portion of a vertical for 
80 or 160 m will usually be very close to ground 
(<.05 X). The modeling software should implement 
the Norton-Sommerfeld ground and properly model 
the current distribution in the lower part of the 
antenna as modified by induced ground currents. 
The loading structure may consist of a web of 
wires with multiple wires at each junction, perhaps 
of different diameters, and with small angles (<90°) 
between adjacent wires attached to the same 
node.    MININEC based software can model 
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multiple acute angles if segment tapering is used 
but if many wires are used in the structure the 
number of segments becomes quite large. 
MININEC Broadcast Professional, using a different 
segment current distribution, does an even better 
job without the need for tapering. However, both 
of these programs do not model the interaction 
properly for very low antennas over real ground. 
NEC2 can model the ground effects correctly but 
may not handle the multiple small angles properly, 
especially if different diameter conductors are 
connected together. NEC4 is much better in this 
respect but is not widely used by amateurs 
because of the expense. 

Real grounds are frequently stratified beginning 
only a few feet down. On 160 m the skin depth is 
of the order of 15-20' and it is not uncommon to 
have several different layers with different electrical 
properties in this distance. Even in homogeneous 
ground the effect of rain and subsequent drying will 
create a non uniform conductivity profile. None of 
the presently available software addresses this 
problem. The validity of NEC2/4 modeling for 
ground has been questioned because of 
differences between experimental measurements 
and predictions made by modeling. This is a 
critical issue. If NEC is fundamentally deficient 
with regard to ground modeling then the 
comparisons to date between buried radial and 
elevated radial systems are invalid. That includes 
the work reported in this paper! On the other 
hand, NEC modeling may be fine but the problem 
lies with the highly non uniform nature of real 
ground, particularly down to depths of 15-20', 
which cannot be simulated with NEC but which 
could greatly modify experimental results. Support 
for this view comes from experimental work at 
higher frequencies, where the skin depth is much 
less, where the modeling predictions are in much 
better agreement with experiment 

The presently available software, while a 
remarkable achievement, is not totally satisfactory 
to fully exploit the possibilities which the suggested 
point of view brings out and a great deal of care 
must be used when modeling a vertical with a 
complex loading system near ground. 

A Design Example 

The advantages of employing this concept can 
be illustrated by the 160 m vertical used at N6LF 
where an effective antenna was built on a very 
difficult site at low cost 

The site available was on a narrow ridge (» 60' 
wide at the top) in a forest There was no 
possibility of installing an extensive buried radial 
system due to the dense forest with heavy 
underbrush, steep slopes and very large old 
growth stumps. Even an elevated system of 
normal size was not practical. 

A support for the antenna was constructed from 
three trees, bolted together in the form of an A- 
frame. This resulted in a support 135' high. 
Allowing 8' spacing above ground for the bottom of 
the antenna and a few feet of slack at the top to 
allow for sway in high winds, the final vertical 
length was 120', very close to W4. The antenna 
was designed for a 75 fi feedpoint impedance. 

The final antenna is shown in figure 5. Four 
radials connected at the ends with a skirt wire were 
used at the bottom. The diameter of the bottom 
loading structure is only 40', compared to 260' for 
normal W4 radials. Two sloping wires were used 
for loading at the top. The use of sloping wires for 
loading may not be optimum but is very simple and 
has the advantage of allowing the antenna to be 
tuned by changing the angle of the wires. This can 
be done from the ground by shifting the attachment 
points for the lines connected to the ends of the 
sloping wires. 

Christman'st1! comparison between a 120 buried 
radial vertical and an elevated 4 radial vertical, 
both with h= X/4, indicates that the gain and 
radiation pattern differences between the antennas 
are quite small: .35 dB for peak gain, 1° for peak 
gain angle. Because the difference is so small I 
have chosen to use the 4 radial elevated antenna 
as the reference antenna because it is much 
easier to model than a complete 120 buried radial 
antenna. 

Using NEC4D for modeling, a radiation 
pattern comparison between a four 
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Figure 5, Antenna configuration 

Figure 6, Comparative radiation pattern 

radial ground-plane antenna and this antenna is 
presented in figure 6. Average ground was 
assumed (cF.005S/m, s=13). The wire used was 
#13 copper and loss was included in the modeling. 
The price paid for drastically reducing the diameter 
of the bottom loading structure is a peak gain 
reduction of 0.5 dB. This is a fair trade for 
dramatically easing the installation of the lower 
loading element because 0.5 dB will probably not 
be detectable in actual operation. In the real world 
where full size radials will very likely have non- 
uniform currents!3!, the reduced size antenna may 
in fact not be inferior at all. 

Any antenna with an elevated radial system 
needs an isolation choke (balun) on the 
transmission line near the feedpoint One of the 
effects of moving the loading from the bottom to 
the top of the antenna is to increase the potential 
between the bottom and ground. This requires 
more inductance in the isolation choke to properly 
decouple the transmission line. For this application 
I happened to have a roll of Vi" hardline. The roll 
was about 2' in diameter so I expanded it into a 
coil 3' long and 2' in diameter with a simple wood 
framework to hold it in place. The result was a 
choke with 350 uH of inductance (4 kQ at 1.840 
MHz). When this value of inductance was placed 
in the model there was still some interaction, 
resonance was displaced downward. On the 
actual antenna this was also found to be true. 
This illustrates one of the drawbacks of very small 
bottom loading structures, it may not be practical to 
have enough inductance in the choke to avoid 
some interaction, at least on 160 m. The Q of the 
choke must be high to limit losses. 

More Modeling 

In the process of developing this antenna a great 
deal of additional modeling was performed to 
explore the effect on performance of different 
loading arrangements. One of the more interesting 
variations was a symmetrically loaded, two radial 
antenna called a Lazy-H vertical®. This antenna 
was intended to be supported between two trees. 
The antenna is identical to that shown in figure 3 
with L1=L2. Table 1 shows gives a comparison 
between a W2, X/4 with 2 and 4 radials and the 
lazy-H with different values of h varying from 120' 
down to 30'. Note that the W4 lazy-H is within 0.3 
dB of the 4 radial W4 vertical and has greater 
bandwidth. If two supports are available the lazy-H 
would be much easier to fabricate. In the design 
example shown earlier the top loading structure 
was simply a pair of drooping wires lead to anchor 
points near ground. The question arises as to the 
comparison between flat configuration, like that 
shown for the lazy-H, and the drooping wire 
alternative. This question can be quickly answered 
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Table 1. Antenna Comparison at 3.510 MHz 
ant LI = L2 ^middle     ^end peak peak wire 2:1 

h a a gain, angle loss SWR 
dB o -dB BwkHz 

V2 137' 0 91 >5000 +.30 16 .08 270 
lazy-H 120' 4.4' 96 1096 +.28 17 .02 280 
" 100' 10.4' 94 384 +.12 19 .07 280 
" 80' 17.4' 81.3 180 -.06 20 .08 260 
" 69.8' 21.6' 71.2 127 -.07 21 .09 240 
" 60' 26.3' 59.7 90.9 -.15 22 .10 200 
" 40' 38.3' 33.7 40.8 -.38 24 .16 140 
" 30' 45.6' 21.5 23.8 -.59 25 .23 100 
X/4 
2 

radials 

69.8' 38.8 .11/-.39 22 15 200 

V4, 
4 

radials 

69.8' 35 7 + 21 22 13 175 

by modeling an end-loaded dipole in free space 
with two different configurations as shown in figure 
7. The results of modeling show that the drooping 
wires must be made longer to achieve resonance, 
the radiation resistance is significantly lower with 
drooping wires and the far-field pattern is 
essentially the same. From a practical point of 
view the use of drooping wires greatly simplifies 
the structure and has very little effect on the far- 
field pattern but may reduce the efficiency of the 
antenna if the radiation resistance is lowered too 
much. This is the kind of trade-off information 
which critical to a new design. 

In general the modeling of this class of antennas 
shows that the primary determinators of peak gain 
and peak gain angle are ground characteristics 
and the height of the vertical radiator (h). The 
loading means has only a second order effect on 
the radiation pattern and a wide variety of loading 
arrangements can be used to satisfy a particular 
situation with little loss of performance as long as 
attention is pad to keeping the radiation resistance 
high enough to control losses. 

Conclusions 

/v 

Figure 7, Flat versus drooping loading wires 

they be viewed as loaded dipoles close to ground. 
The object of changing the point of view to make it 
easier to recognize the wide range of options 
available for configuring a high performance 
vertical to meet the needs of particular site and set 
of limitations. Properly assessing the many 
possibilities requires the use of modeling software. 
Unfortunately none of the available software 
packages can provide the computational 
capabilities desired at a cost attractive to 
amateurs. Users of MININEC and NEC2 based 
software must be very careful in modeling and 
interpreting results. 

This paper has advocated the adoption of a 
different conceptual view of vertical antennas: that 
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Tower Equivalent Radius 

William F. Cummins 
K6MYH 

Abstract 

The equivalent radius of a lattice tower is calculated by comparing the scattered power from 
such a tower section with the power scattered from a series of cylindrical wires of various 
radii. The MOM code NEC is employed at two different wavelengths which are greater than 
the tower dimensions to produce a result that differs from various estimates seen in the 
literature. 

I. Introduction 

The question arises in various journals and news groups as to what one should use for the 
equivalent radius of a typical amateur tower when it is to be part of a HF radiating structure. 
Although, one, in principle, can detail the tower structure in the antenna calculation; it 
becomes quite complex and requires a very large number of segments in an MOM code. 

In most real world cases this level of detail really is not required; since the total EM 
environment being modeled is not specified that well. While most amateur antenna structures, 
proper, can be specified accurately; their surroundings cannot. Ground conductance and 
permitivity generally are estimates, and all of the wires in structures and power lines within a 
few wavelengths of the antenna are not specified. Thus, treating a tower as one or more 
cylindrical wires is sufficient to the problem at hand. Furthermore, HF radiation patterns are 
weak functions of the wire radius. The primary effect of conductor radius is on feed point 
impedance generally varying somewhat as logio(h/a) where h is the antenna height and a the 
radius.(1) 

In this paper the equivalent radius of a 44 ft. section of Rohn 25G<2) tower is calculated by 
comparing the power scattered in free space from a vertically polarized plane wave at 100 
KHz and 1 MHz with the power scattered from a series of cylinders of the same length. The 
wavelengths are chosen to be a good deal greater than the lengths involved, and the length, in 
turn, is much greater than the transverse dimensions of the tower and cylinders. The Rohn 
tower (Fig. 1) is triangular with a side dimension of 12 in. and individual section lengths of 16 
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Fig. 1 

There are a number of estimates for equivalent area that have been used. In Jasik(3) the 
equivalent radius of a triangle is given by 8«,= 0.4214a, where a is radius of the outscribed 
radius of the triangle. For the case in hand this gives a«, = 2.92 in., which is probably too 
small. The other two common estimates are equivalent area and equivalent perimeter. For an 
equivalent area we get a=, = 4.7 in. and for equivlent perimeter a«, = 5.73 in. As we will see 
later, the answer lies between these two values. 

n. Calculations 

In this exercise a 16 in. section of tower is generated and replicated to form the complete 
model. A vertically polarized plane wave illuminated this section at both 1 MHz and 100 
KHz.. Also, the scattered power was calculated for the wave incident both upon a tower face 
and edge-on to one leg. Two widely separated frequencies were used as reliability check of 
the method and model. Fig. 2 is a sample input file. 

CM           TOWER SCATTERING X-SECnONS       5/20/97     20:31:38 
CM           INCHES SCALED TO MTRS. 
CE 
GW1,1,0.0,0.0,0.0,0.0,0.0,16.0,0.625            ! VERTICAL POST 
GW2.1,0.0,0.0,16.0,12.0,0.0,16.0,0.15S3      ! X-BRACE 
GW3,I,O.0,0.0,16.O,12.0,O.0,0.0,0.1563        ! DIAG. BRACE 
GM3,1,0.0,0.0,I20.0,12.0,0.0,0.0                 ! ROTATE & SHIFT FOR NEXT ELEMENT 
GW7,1,6.0,10.3923,0.0,6.0,10.3923,16.0,0.625             ! 3RD POST 
GW8,1,0.0,0.0,16.0,6.0,10.3923,16.0,0.1563                 ! X-BRACE 
GW9,1.0.0,0.0,16.O,6.0,10.3923,0.0,O.1563 ! DIAG. BRACE 
GM10,32,0.0,0.0.0.0,0.0,0.0,16.0                 ! REPEAT VERTICALLY 
GW400,1,0.0,0.0,0.0,12.0,0.0,0.0,0.1563                       ! BOTTOM X-BRACE 
GW401,1,12.0,0.0,0.0,6.0,10.3923,0.0,O.I563               ! 
GW402,1,6.0,10.3923,0.0,0.0,0.0,0.0,0.1563                 ! 
GS0 0 0 0254                                                              ! SCALE FROM INCHES TO METERS 
GE                                                                              ! FREE SPACE 
PT-1 
EX1,1,1,0,90.0,0.0,0.0,0.0,0.0,0.0,1.0           ! VERT. POLARIZED PLANE WAVE 
FRO,1,0,0,O.I                                              ! 100 KHZ 
RPO,I0,2,O001,0.0,0.0,10.0,90.0                  ! SCATTERINGX-SECTIONS 
EN 

Fig. 2 
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Cylinder models of 4.0, 4.5, 5.0, and 5.5 in. of the same length as the tower and composed of 
16 in. segments were used, and the scattered power was plotted at both frequencies. This 
data was used in conjunction with the power from the tower runs to interpolate a value for 
equivalent radius. All calculations were made at double precision. 

HI. Results 

The tower calculations showed very little difference between broadside and edge-on 
illumination being 1.037 X 10° W. and 1.0421 X 10J W., respectively, at 1 MHz.; and 1.0177 
X 10"7 W. and 1.0277 X 10"7 W. at 100 KHz. Averaging these values gave 1.0396 X 10"3 W. 
at 1 MHz and 1.0227 X 10"7 W. at 100 KHz. Fig. 3 is a plot of the data for both frequencies 
showing the Rohn 25G equivalent radius. 

Pscat(W) 
1MHz 
0.00110  c , ,  
0.00109 >----»-■5--1—r 

W Cylinder Scattered Power 
Vertical Polarization 
lMHz&lOOKHz 

..._j J J.. 

PscH(W) 
100 KHz 

O.OOOOO0U0 
0.000000109 
0.000000108 
0.000000107 
0.000000106 
0.000000103 
0.000000104 
0.000000103 ,   „ 
0000000102    Pscat(W) 
0.000000101 
0.000000100 

,  ,-   j    .   j.   , _. D.0O0O00O99 
-jr^l^Iltutd 0.000000098 
Lv"4>;L;^>qi-:^zj 0A00000097 

tiiij"" 

4.00   4.10   4.20   450   4.40  4.50   4:60  4.70   4.80   4.90   5.00   5.10   5.20   530   5.40   5.50 

a(in) 

Fig. 3 

The resulting equivalent radius for the Rohn 25G tower is 5.24 - 5.25 in. 
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IV. Discussion 

The agreement between the equivalent radius obtained at two wavelengths differing by a 
factor of 10 is a measure of confidence in the method. In any case, comparison based on the 
scattering cross sections has a firmer physical foundation than some of the other guesses. 

These results were used in the design of a multi-wire folded unipole antenna system for one of 
the local amateurs. A VHF tower and antennas near to the radiating structure and the use of 
elevated radials made for a sufficiently complex geometry that a detailed tower geometry was 
precluded. It will be interesting to see how close the input impedance predictions are on 75 
and 160 meters when this design is constructed. 

Calculations will be made for a variety of other tower designs to see if there is much 
difference between the mechanical details. 
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Simple CP Fractal Loop Arroy With Parasitic 

Nathan Cohen 
Fractal Antenna Systems, Inc., 

5100 North Ocean Blvd Suite 1218 
Ft Lauderdale FL 33308 

fractenna@aol. com 

L Introduction 
Circular polarization in wire antennas is acheived in a number of ways, including crossed elements 
with 90 degrees phase lag, or helical arrays. Here I present an alternative with a NEC4 model for a 
simple, circularly polarized, planar, fractal loop with a parasitic quad reflector. It may prove useful as 
a moderate gain system or be used as a front end element for CP in a dish or elsewhere. 

II. Description 
A simple, square Minkowski fractal loop of second iteration (Cohen,1995) was modeled with NEC4 
in free space. However, in distinction from this previous work, the loop was loaded at the feedpoint to 
produce two current maxima which were out of phase for the feedpoint and it's nearby-spaced 
antipode. Such an arrangement naturally produces a small, circularly polarized fractal loop which is 
planar and end-fire. A Yagi-Uda type reflecting parasitic was then placed in parallel to the fractal loop 
and also loaded on the opposite side, for maximum end-fire gain. The array is shown in Figure 1, and 
relevant parameters are shown in Table 1. 

Table 1 
Fractal Loop Width: 0.154 waves 
Quad width: 0.29 waves 
Element Spacing: 0.2 waves 

In the modeling, segment density was kept uniform with respect to the fractalized loop. A total of 
100 wires comprised the loop while 4 wires made up the quad parasitic. Using EZNEC Pro with a 
NEC4 engine, the patterns and impedances were then ascertained in free space.   Conservative wire 
limits were utilized and copper wire losses were incorporated into the field strength (gain) estimates. 
Loads were also loss-included and a QF of 200 was assumed. Load 1 (quad) was -260 ohms while 
load 2 (fractal loop) was -430 ohms. A wire width of 0.00025 waves was also assumed. 

m. Results 
Figure 2 reveals the (amplitude)current distributions of the elements, with the circle corresponding to 
the feedpoint and squares as load locations. The current distribution clearly phase shifts as the 
symmetry of the fractalized loop motif iterations provides both the orthogonal polarization 
components: the fractal structure acting as a phasing line. The quad acts purely as a reflecting parasitic 
and enhances the gain. Figure 3 gives the end-fire pattern, gain (a), and 3D power pattern (b). The 
impedance gives an excellent match to a 50 ohm feed and the VSWR to 55 ohms is shown in Figure 
4. This represents a 3 dB bandwidth of slightly less than 5%. 
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IV. Discussion and Conclusion 
As a stand-alone element, this CP fractal loop provides a small planar antenna which could be 
incorporated at the front end of a dish or other system. With the parasitic below it, the array gives 
reasonable end fire gain for such a simple arrangement with low height. 

The fractal elegantly provides a small antenna with a built in phasing arrangement for production of 
CP, suggesting that this may prove a powerful option in other applications where phase lags are 
needed for gain and/or polarization control. 

Particular use of this array may arise at VHF and UHF satellite links, where broad bandwidths may 
prove a hindrance and the simplicity of the arrangement is obvious. LEO telecommunication may 
benefit from the broad elevation coverage for reasonable CP gain. 

V. Acknowledgements 
Aspects of this work are patent pending. Fractal Antenna Systems, Inc., is a licensed user of NEC4. 

VI. Reference 
Cohen,N., 1995, "Fractal Antennas Part 1", Communications Quarterly, Summer, 7. 
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Figure 2 

PARASITIC FRACTAL LOOP ARRAV 
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Figure 3(a) 
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Figure 3(b) 
IMF 

m 

5 

SWR 

3 

2 

1.5 

1.1 
1 

420 Freg MHz 

Figure 4 
440 

1050 



NEC4 Analysis oi a Fraclalized Monofilor Helix in on Axial Mode 

Nathan Cohen 
Fractal Antenna Systems, Inc., 

5100 North Ocean Blvd Suite 1218 
Ft Lauderdale FL 33308 

fractenna@aol. com 

L Introduction 
The monofilar helix has proven to be a versatile antenna, with three main modes: normal; axial; and 
conical. In particular, the axial (Kraus) mode has been widely used due to its high end-fire gain, simple 
method of producing circular polarization, and broad bandwidth. Here we report the results of NEC4 
simulations of such a fractalized helix (Cohen, 1995a) in an axial mode. The effect of the 
fractalization is to substantially shorten the length for a desired end-fire gain in the axial mode. 

H. NEC4 Modeling 
A multi-turn monofilar helix was fractalized with a Minkowski motif to a second iteration by 
generating an eight-fold symmetry as an approximation of a circle. The effect is similar to the 
fractalization of a loop (Cohen,1995b) and is related to the approach of meander line loading of: a 
loop (Pfeiffer ,1994); and axial mode helix (Barts and Stutzman, 1997). A single turn's geometry is 
shown in Figure 1. The model was then extended to 4 turns and attached to a small ground plane, 
approximated by a wire mesh, and shown in Figure 2. 

Segment and mesh density were enhanced near the feedpoint on the ground plane but otherwise kept 
uniform with respect to the fractalized helix. A total of 789 wire segments comprised the helix while 
36 wire segments made up the ground plane. Using EZNEC Pro with a NEC4 engine, the patterns 
and impedances were then ascertained in free space. Conservative wire limits were utilized and copper 
wire losses were incorporated into the field strength (gain) estimates. 

DI. Results 
In the axial mode for CP, a helix should maintain virtually a 1:1 axial ratio of orthogonal polarization 
components. The current falls to zero at the end of the helix and the power pattern is end-fire with 
little backfire component. These criteria were indeed met by the fractalized helix over a range of 
model frequencies. For convenience of comparison to an actual fractal helix, the resonance was 
modeled at and near 675 MHz. At this frequency, the length, diameter, and perimeter of the 
fractalized helix are shown in Table 1. 

Table 1 
Length: 0.345 waves 
Diameter. 0.178 waves 
Spacing Between Turns: 0.086 waves 
Turn perimeter. 1.88 waves 
Ground Plane diameter: 1/2 wave 
Wire width:   0.001 waves 
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In Figure 3 is shown the circularly polarized power pattern at 90 degrees elevation (end fire) and 
Figure 4 shows the corresponding pattern from the side, at zero degrees azimuth. The axial mode 
criteria are met (at least) over 30 % bandwidth. 

Figure 5 reveals the VSWR to a 280 ohm feed across the axial mode frequencies. The axial ratio 
remains very close to one in the end-fire orientation far beyond this range. The 2:1 VSWR bandwidth 
is approximately 20%. 

IV. Comparisons 
Figure 6 reveals the constructed helix , with an attached plastic radome, over a 1/2 wave ground 
plane. With radome removed, return loss measurements (SI 1) were done from 0-2300 MHz. A very 
large number of moderate/high Q resonances were found, which are believed to be normal or conical 
mode in nature; the details of which will be discussed elsewhere. However, this axial mode is readily 
apparent in Figure 7. The modest return loss (dB) and bandwidth are closely matched to that one 
would expect with the NEC4 results, which indicate typical real impedances of 180-350 ohms. 

At 675 MHz, a circular helix was constructed with 4 turns and mounted above a 3/4 wave ground 
plane as described by Kraus (1985). Length was 0.95 waves with turns approximately 1 wave in 
circumference. S12 measurements reveal the gain of these two are within 1 dB (0.5 dB RMS) of each 
other, with the fractalized helix being favored in the measurement over the circular helix. Both 
measurements were corrected for impedance mismatch to 50 ohms. 

3D NEC4 Modeling of these two helices reveals very similar (within 0.3 dB) gains. However, as 
shown in Figure 8, there is a major difference in sidelobe structure between the two helices, favoring 
the fractalized helix, at least with this small number of turns. 

V. Discussion 
The fractalized helix provides for some surprising attributes in comparison to a (conventional)circular 
helix. In particular, the shortening of length-a/wosr a factor of 3 for a desired gain- provides for 
substantial practical advantages and opens up a variety of new applications often restricted to other 
antenna designs. Both the turn width and ground plane size are also substantially shrunk, allowing for 
more constraining form factors to be considered. Finally, the higher drive impedance, 280 ohms for the 
fractal versus 150 ohms for a circular helix, provides for greater efficiency to an already high 
efficiency antenna, suggesting that compromises in design dielectrics for support will have only minor 
impact on the antennas gain. 

It should be noted that the smaller ground plane (1/2 wave) of the fractalized helix is not only a 
practical advantage, but an electrical necessity. The antenna will not function in the axial mode with a 
3/4 wave diameter ground plane. 

Clearly the fractalized helix is being fractal loaded and it is interesting to note two aspects of this. 
First, the fractal patterns are hardly defined by full radial symmetry. X and Y symmetry are apparent 
but radial is not. This is in contrast to assumptions made by Barts and Stuztman (1997) in a meander 
load or 'stub load' helix, and radial symmetry manifested by an opening angle, as seen in self-similar 
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arrays (log periodics). Fractal antenna work without this constraint of radial symmetry. Second, the 
perimeter of the fractal turn is very much larger than that for a circular helix (about 1.0 wave) or stub 
loaded helix (less than 1.5 waves). This suggests that if there is some fundamental restriction, it has 
not been acheived and further fractal loading, through different motives and/or further iterations, 
should enhance shrinkage and gain performance before succumbing to the restriction. 

As with all antennas, including fractal ones, the tradeoff of size versus field strength versus bandwidth 
is evident. And here, unlike many fractal antenna designs, the tradeoff has favored size over bandwidth 
for the same gain. Hence the 'price to be paid' for these attributes is the smaller (20%) bandwidth. Yet 
the loss of bandwidth should not be too surprising given that the antenna is at a supergain condition, 
interpreted as meaning the gain is higher than that expected by the equation 

G=4fL (1) 

with L in waves. At 0.345 waves length the 6.3 dB gain is virtually the same as that found from 
NEC4 modeling. It will be illustrative to compare these results with those from other fractal turn 
geometries and additional iterations. It should, in principle, be possible to use the fractal geometry to 
get one to a few dB more gain from a very short helix in the axial mode, and tradeoff bandwidth in 
turn. That effort may be additionally advantageous in many applications of point to point and satellite 
uplink telecommunications. 

VI. Conclusions 
In comparison to an axial mode monofilar circular-turn helix, this fractalized helix provides for 
substantially smaller size and better sidelobe response. Furthermore it requires a smaller ground plane. 
The 20% bandwidth represents the practical tradeoff for the shrunken size. Additional fractal motifs 
and/or iterations provide for yet higher gain in a small form factor. 
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Abstract 

The design of a monopulse radar antenna, which would minimize the corrupting properties of 
jammers in the sidelobes of the antenna while tracking a skin (non-jamming) target in the antenna's 
main lobe, is described herein. Specifically, the antenna should have low sidelobes, particularly in 
the difference channels. The low sidelobes are achieved by selectively attenuating the gain in the slot 
elements of the antenna. Therefore, a min-max optimization algorithm was developed to find an 
optimal set of slot element attenuation factors between zero and one, which minimize the difference 
sidelobe gains. 

The difference channel sidelobe levels were reduced by 14.15 dB beyond 18 degrees off 
boresight.  MATLAB and the MATLAB Optimization Toolbox were used to design the antenna. 

Introduction 

The two main functions of the radar on a radar missile are to detect the target and to provide 
angles to the angle tracker. In order to maximize the probability of detecting a target in the presence 
of a sidelobe jammer, it is desirable to minimize the gain of the antenna's sum channel side lobes 
relative to the gain of the main channel. However, if a jammer is in the sidelobes, there would 
normally be considerable angle noise which is a significant contributor to miss distance. The reason 
for this stems from the fact that, typically, the gain in the difference channel is approximately 10 dB 
greater than in the sum channel (Figure 1), and jamming noise in the difference channel contributes 
directly to measured angle noise, while noise in the sum channel is only a minor contributor to 
measured angle noise. Figure 1 is the nominal antenna pattern of the antenna used in this study. 
That is, it is the original pattern with all slot element weighting factors set equal to unity. 

If an antenna could be developed with low sum and difference channel sidelobes, then in the 
case of a jammer many miles to the rear of the screened target (stand off jammer), the missile could 
maneuver in order to put the jammer into the far sidelobes (angle off boresight greater than 18 
degrees) where the sum and difference channel gains have been reduced. 

How a Monopulse Radar Measures an Angle 

A monopulse radar is one that can find the angle of a target off boresight (the normal to the 
antenna) with a single pulse. To accomplish this, the antenna of a monopulse radar is divided into four 
quadrants. The electromagnetic energy passes in and out of wave guide slots (or antenna elements) 
that are found in each quadrant. On a missile, the same antenna is used to both transmit and receive 
the energy. 

It is assumed that the target is far from the antenna so that the energy from the target is a plane 
wave. It is also assumed that there is no cross-coupling between channels. Therefore, it is assumed 
that the antenna pattern can be calculated by multiplying the array factor by the element factor. The 
array factor is simply the fact that the wave front hits some slots before others when the target is not 
on boresight. Therefore, the array factor gives the relative phase for each slot (i) for target locations 
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at different roll angles (<t>), and angles off boresight (6). The element factor gives the pattern for a 
single slot element which, basically, is a function of the polarization. The element factor is a function 
of the roll and angle off boresight.   It is assumed that the polarization is in one direction only; 
therefore, for zero roll, the element factor is unity for all angles off boresight. 
The array factor is: 

element = a, 
^sine(x-cos4> + VjSin<|))l 

The a;'s are the slot element attenuation factors. Note that the antenna chosen for this research is a 
typical antenna that could be used on a missile and has 35 slot elements per quadrant, or 140 elements 
total. 
The element factor is: 

(cos2esin2<|) + co^^Ocosi-^-sinesirKl) 

(1 - sin2esin2<tO ,2fl„'n2A-)2 

CO 
•a 

30 40 50 60 

angle off boresight (deg) 

Figure 1. Nominal Sum and Difference Patterns 
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In order to form the sum, and azimuth and elevation difference signals, it is necessary to add 
and subtract the slots in the four quadrants; namely, the sum signal (S) is the sum of the four 
quadrants. The horizontal difference signal (DH) consists of the difference between the left and right 
halves. The vertical difference signal (Dv) consists of the difference between the top and bottom 
halves. The real part of the resultant phasor gives the sum signal. To find the magnitude of the 
difference signals, one must take the imaginary part of the resultant signals. 

In this algorithm, when the sum and difference signals are calculated, they are divided by the 
sum of the slot attenuation factors. The reason for this is twofold. First, when the antenna pattern 
is graphed, the peak of the sum channel is equal to unity. The second, and more important, reason 
is to prevent the min-max algorithm from setting all slot values to zero. That is, if the goal is to 
minimize the sidelobe levels, then zero for all slot locations would yield zero sidelobe levels. 
However, zero attenuation factors would also eliminate the sum and difference main lobe gains as well. 
Therefore, if the sum and difference signals are divided by the sum of the attenuation factors, then if 
the slots were set to zero, the sidelobe gains would be divided by zero which would not yield low 
values. Consequently, the min-max algorithm would not attempt to force the values to become zero. 

The radar energy coming from a distant target is an electromagnetic plane wave that will strike 
the antenna at theta (9), the angle off boresight. Unless theta is zero, the wave will arrive at some 
slots before others, and there will be a phase change from one slot to the next. This phase change is 
the basis for the angle measurement process. If one moves a source of radiation from a position 
normal to the antenna (boresight) to some large angle off boresight, one could plot the magnitudes of 
the output of the sum and difference signals to get a plot similar to Figure 1. 

Since the sum signal near boresight resembles a cosine wave (S = cos(9)) and the difference 
signal resembles a sine wave (D = sin(9)), the measured angle (9 J is (essentially) equal to a constant 
K (described below) times the TanJ(D/S). 

9m=K*Tan-'(D/S) (Equation 1) 
Since S and D are phasors, one can not divide the difference by the sum signal as indicated in 

Equation 1. There are various ways to achieve the measured angle without dividing phasors, and one 
of these methods is as follows: 

If the target is in the main lobe of the antenna, it can be shown that the following angle 
discriminant gives the angle off boresight of the target: 

9n=K*[Z (S+jD) - Z (S-jD)] (Equation 2) 
When the sum and difference signals are formed, it can be shown that they are ninety degrees 

out of phase; therefore, the signal S+jD can be obtained by simply adding the difference signal to the 
sum signal and S-jD can be obtained by subtracting the difference signal from the sum signal. The 
symbol /- refers to taking the phase of the signal. The constant K is necessary because the first zero 
cross of the sum pattern is not the spacial angle of 90 degrees, but is an angle less than that. Note that 
the first zero cross is sometimes called an "electrical 90 degrees". If the target is not in the main lobe, 
the angle discriminant will yield some random angle having no relation to the actual angle off 
boresight. 

Let us assume that a skin target is in the main lobe and a jammer is in the sidelobe. Generally, 
when detection occurs, the radar is much closer to the target than to the jammer, even though the 
jammer is in the sidelobes, because the transmitted power of the jammer is usually greater than that 
of the radar power reflected off the target. Naturally, if the sum channel sidelobes are very small, 
then detection is facilitated. One can think of the effect of the jammer as an increase of receiver noise, 
thus reducing the signal to noise ratio (SNR) level. Note, however, that when a target is tracked, it 
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is on boresight, and the sum signal is at its maximum value while the difference signal is zero (or close 
to zero). The jammer corrupts both the sum signal and the difference signal, but noise in the 
difference channel is more deleterious than noise in the sum channel because the difference signal noise 
(from the jammer) is added to the very small difference signal from the tracked target. (Recall, the 
difference channel gain of the target on boresight is zero). Note also, that usually the difference 
channel gain in the sidelobes is much larger than the sum channel gain as shown in Figure 1; therefore, 
there is more angle noise than one would expect from a calculation based on signal to noise ratio if 
it was assumed that the noise in the signal to noise calculation was receiver noise. The reason for this 
is that the signal to noise ratio is based on the sum channel calculations only. Therefore, one of the 
problems of large difference channel sidelobe gains is a mismatch of predicted and actual angle noise, 
and this is a serious problem if the angle tracker employs a Kaiman filter. 

Consequently, the objective of this research is to find a method of designing a monopulse 
antenna with low difference channel gains in the sidelobes without raising the sum channel gains 
excessively.  The method used to minimize the sidelobe gains is a min-max optimization scheme. 

Min-Max Optimization Applied to Antenna Design 

Parameter min-max optimization involves finding the minimum of a maximum function. That 
is, one has a function of two sets of variables x and y where x is the minimizing vector and y is the 
maximizing vector. For the example we are considering, the vector x is the set of attenuation factors 
{aj}. For our example, the maximizing vector is equal to the roll angle phi, and the angle off 
boresight theta (y = {<t>,8}). The min-max solution, denoted with asterisks, of f(x,y) is the set of 
values xl*, x2*..., etc. which minimizes the max function g(x) = max-, f(x,y). That is, in order to 
find the function g(x), the function f(x,y) is maximized over the multidimensional vector space yl, y2, 
etc. For example, to find the min-max solution of f(x,y) one picks a set of values for the x variables 
and then maximizes f(x,y) over the y variables. Then having this max function g(x), one will calculate 
first and/or second order gradients (this research employed only first order gradients) at the various 
peaks of the max function. Then one finds a combination vector which is a combination of the above 
gradients. 

The mathematical reason for calculating the gradient at not only the global maximum, but at 
all peaks close to the global maximum, can be found in Reference 1; however, an intuitive reason will 
be given at this point. Let us assume that the gradient is calculated only at the global maximum. Then 
the next step is to calculate a new set of slot attenuation factors. The new set is equal to the previous 
set (set initially equal to unity) and then a modification vector is added which is equal to some small 
stepsize times the negative gradient which was calculated at the global maximum. If one recalculates 
the peaks in the sidelobes, one would find that the peak that previously had been the global maximum 
has been reduced; however, one would also find that a peak that previously had been near in height 
to the global maximum is now a global maximum and its height may be actually higher than the 
previous global maximum. 

Therefore, to prevent other peaks from rising up unexpectedly, it is necessary to calculate a 
direction to travel which will minimize not only the global maximum, but will minimize all other peaks 
close to the global maximum. This is accomplished by finding the gradients at the global maximum 
and at the peaks close in height to the global maximum and then finding a direction which is a 
combination of all of the above gradients. The derivation to the direction to move is found in 
Reference 1; however, the combination gradient direction is given as follows: 

For a given set of attenuation factors x, let the global difference channel sidelobe peak, beyond 
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18 degrees off boresight, be denoted P^ That is, P! = maxy{DH(x,y),Dv(x,y)}. Let all other 
difference channel sidelobe peaks within some small value of Vx be denoted P2, P3, etc. Find the 
gradient of the horizontal and vertical difference channel antenna patterns with respect to the 
attenuation factors x, at the current set of attenuation factors, and at the phi and theta that gives the 
local peak of attenuation factors. Let these gradients be denoted del(Pj) for the i"1 gradient 
respectively. Let each gradient be a row in the matrix G, which consists of all gradients of local peaks 
within a small distance of the global maximum. 

The direction to move is the result of the quadratic minimization problem, where the column 
vector x* which is the minimum of xTx, with the linear constraint Gx< =-1. 

The new set of attenuation factors can now be computed from the previous set of attenuation 
factors augmented by a vector which is equal to a small stepsize times this combination direction (the 
output of the quadratic programming algorithm). 

Having a new direction to move in the minimization space, one can pick a new value of x, find 
the max function and repeat. Note that even if the function f(x,y) is continuous and smooth over the 
full set of variables x and y, the max function g(x) is generally not smooth. Therefore, the minimum 
is typically at the base of a V. Consequently, the gradient is generally not equal to zero at the 
minimum. 

The iterative procedure to find a low sidelobe antenna is to choose an initial set of weights. 
For example, an initial set of weights could be the nominal design where all of the weights are set to 
unity (equal weighting). Then the algorithm, after approximately 200 iterations, will terminate and 
give a set of weighting factors which produce the desired low sidelobe antenna. Various other sets 
of initial weights were chosen at random, and for most of these other starting conditions, the algorithm 
terminated at approximately the same set of final weighting factors as in the case where all initial 
weights were set to unity. Some sets of initial conditions did not lead to the same final set of 
attenuation factors; however, the final design for those cases had higher sidelobes than the design 
where the starting set of weights were all set to unity. The final design presented here had unity 
weights for the initial values. 

Find The Maximum Peak(s) 

The initial design criterion was to reduce the peaks of the difference sidelobes as much as 
possible beyond some number of degrees off boresight. The threshold number of degrees off boresight 
examined were 18, 16, 14, and 11 degrees, but only the cases where the sidelobes were reduced 
beyond 18 degrees will be discussed here. For angles less than this set number of degrees off 
boresight (e.g. 18), the sum and difference peaks were allowed to rise without limit. Therefore, the 
first step after choosing the initial attenuation factors was to find the maximum peaks in the sum and 
azimuth and elevation difference channels. The MATLAB Optimization Toolbox has a subprogram, 
called CONSTR for constrained minimization, which was used for this purpose. Since we are 
concerned with finding the maximum peaks of the sidelobes, and since CONSTR finds the minimum 
of a function, the sidelobes were expressed as the negative dB of the absolute value of the antenna 
pattern. Then, by finding the minimum of the negative pattern, we are actually finding the maximum 
peaks. An algorithm employing a constrained minimization is necessary since we are minimizing the 
sidelobes for some angle off boresight beyond some value (e.g., 18 degrees). 

The subprogram CONSTR will only find a local maximum peak. That is, the subprogram 
CONSTR starts with an initial starting location for the roll angle, phi, and angle off boresight, theta, 
and then it is an iterative algorithm which moves in the gradient direction of the theta and phi space 
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until the maximum peak closest to the starting position is found. Since this peak may or may not be 
the global maximum (the absolute maximum peak), it is necessary to use a grid of starting points. It 
was determined by observing a large set of two and three dimensional graphs that the starting grid of 
points should consist of 12 points in the phi direction and 9 in the theta direction. Thus, the 
subprogram CONSTR is initiated from a total of 108 starting points in each of the three channels. 
Note that the antenna chosen for this study did not have 108 separate peaks in each channel; therefore, 
many duplicate peaks were found. Consequently, an algorithm was developed which would eliminate 
the duplicate peaks. The reason that the number of elements in the initial grid of starting points was 
greater than the total number of peaks was to guarantee that every peak would be found at least once. 

The subprogram CONSTR uses the gradients of the antenna pattern with respect to the theta 
and phi maximizing variables. The gradient can be calculated either numerically or analytically. The 
antenna pattern must be calculated three times for each iteration step if the gradient is calculated 
numerically, and only once if the gradient is calculated analytically. Therefore, in order to have the 
algorithm operate at maximum speed, the gradient was calculated analytically. This entailed taking 
the derivative of the antenna pattern (the array factor times the element factor) with respect to theta 
and phi. 

The initial design consisted of minimizing the azimuth and elevation difference channel peaks 
for angles off boresight beyond 18 degrees. There was no attempt to minimize either the sum or 
difference channel peaks for angles off boresight less than the threshold number of degrees (e.g. 18) 
nor were they prevented from rising above the original levels 

Gradient of Antenna Pattern With Respect to Attenuation Factors 

After finding the peaks in the region where they are to be minimized, one must find the overall 
peak (global maximum) and then all other peaks that are close in height to the global maximum. The 
next step is to calculate the gradient of the antenna pattern with respect to the parameters in the 
minimization space, and to calculate the gradient at the global peak and all peaks close to the global 
peak. The parameters in the minimization space are the slot element attenuation weighting factors. 
Each weighting factor is considered a dimension in the minimization space. Therefore, for an antenna 
with 140 slot elements, with 35 elements per quadrant, the minimization space has 35 dimensions. 
In other words, the minimization space is 35-dimensional. It is 35-dimensional instead of 140- 
dimensional because it is assumed that the four quadrants are symmetric. Consequently, it is necessary 
to minimize with respect to the elements in one quadrant; the other three will be the same. 

Results 

The maximum difference channel peak for angles off boresight beyond 18 degrees for the 
original nominal antenna (all weighting factors set equal to unity) is 13.06 dB below the sum channel 
main lobe peak. The comparable maximum difference channel peaks using the attenuation factors 
found as a result of the above algorithm are 27.21 dB below the sum channel main lobe peak. Thus, 
the above algorithm reduced the sidelobe peaks in the design space by 14.15 dB. The horizontal 
difference channel antenna pattern with sidelobes lowered 14.15 dB beyond 18 degrees off boresight 
is shown in Figure 2. 

An added benefit of reducing the difference channel sidelobes is a reduction on the sum channel 
beamwidth. The sum channel of the main beam was reduced from 3.36 degrees to 3.16 degrees. A 
narrow beam is extremely desirable for tracking multiple skin or multiple jamming targets in the main 
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beam. 
One of the less desirable consequences of the approach taken to reduce the sidelobe levels is 

a reduction of the sum channel main lobe gain. This gain reduction is unavoidable since, in order to 
shape the sidelobes, all but one of the antenna slot elements have been attenuated by various amounts. 
As a result, the total power entering the radar was reduced. For the design given, the total power is 
reduced by 5.5 dB. 

10 20 30 40 50 60 70 80 90 

angle off boresight (deg) 

Figure 2. Horizontal Difference Pattern With Reduced Sidelobes 
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Abstract 

EMP simulation is used for testing the capability of dielectrics windows 
(groved within the insulating layer of linear antenna) for enhancing the near 
electric field. 

EMP calculation is based on the FDTD code, introducing absorbing limit 
conditions in the way of Majda et al [1], in order to obtain convenient 
procedures of calculation. 

Good agreement by using these new limit condition is obtained with previous 
simulation of Maloney et al [2]. The effects of the geometrical parameters of 
dielectrics windows is then simulated for the sake of optimizing the 
enhancement of near field. Qualitative interpretations are presented. 

INTRODUCTION 

Prvious theoretical approximate equation [3] have given insight in the capability 
of dielectrics windows (around a wire antenna) for enhancing the near field. In 
order to obtain an exhaustive view on this subject a general simulation of the 
near electric field is practiced. 

Previous works related to modelling electric field [4,5,6] have been published 
but only a few papers were related to the radiation of antennas [2,7]. For a 
complete analysis of radiation procedure in the FDTD method, arbitrary limits 
with total absorption capability is required. The usual absorbing conditions lead 
to heavy calculation and it is attempted to use analogous conditions previously 
used by Majda et al [1] for a quite different purpose. 

PRACTICAL SIMULATIONS 

EMP simulation is based on the following gaussian excitation [2] applied to a 
wire antenna. As shown in figure (5) to (7), the simulation results obtained 
from this new mixed procedure are in good agreement with those derived from 
the EMP procedure initially used by [2]. Varations in the near electric field due 
to the number of windows are shown in figures (2) and (3). Variations due to 
height of windows can be shown in figure (4). 

1066 



DISCUSSION 

It clearly appers that five windows, at least, are required for a marked 
enhancement of the near electric field in the vicinity of the wire antenna, 
practically in the top half of the wire. No significant further enhancement is 
obtained for more than five windows. 

the effect of window height is not marked in the experimented range. 

Radiation patterns due to the emission from gaussian pulse clearly show that 
the extent of the high near field domain is more important as the number of 
windows increasess. 

All these results are in qualitative agreement with the assumption of multiple 
interferences due to windows. 
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Figure(5,a) 

Figure(5,b) 

Figure(5,c) 

Figures(5,a,b,c)Radition of gaussian pulse of wire antenna without windows for tree different 
times. Gray scale show magnitude of electric field 
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In 
Figure(6,a) 

Figure(6,b) 

Figure(6,c) 

Figures(6,a,b,c): Radition of gaussian pulse of wire antenna with one window for tree 
different times. Gray scale show magnitude of electric field 
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Figure(7,a) 

Figure(7,b) 

Figure(7,c) 

Figures(7,a,b,c): Radition of gaussian pulse of wire antenna with five windows for tree 
different times. Gray scale show magnitude of electric field 
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1. Introduction 

Genetic algorithms have recently been embraced in the computational electromagnetics commu- 
nity as a robust means to optimize designs over a multi-dimensional non-linear search space. 
Search algorithms offer the potential to enhance the design and understanding of complex an- 
tenna systems which, heretofore, have had limited engineering understanding. In this context, 
novel wideband log-periodic direction-finding antennas are being studied. Successful application 
of any search algorithm for wideband log-periodic antenna design requires 1) efficient numerical 
electromagnetics, 2) parametric geometry and grid generation capability and 3) parallel imple- 
mentations for reasonable engineering design times. In this paper, we address these issues in 
the development of an efficient, network-parallel, genetic-algorithm optimization of the conical 
interdigitated log-periodic antenna (IDLPA)2. Results to date have yielded families of compliant 
designs and have shown correlations between antenna performance and antenna design parameters 
that were not previously known. 

2. Conical Interdigitated Log-Periodic Array 

In Figure 1(a), we represent a planar interdigitated log-periodic structure. It comprises N identical 
log-periodic antennas arranged radially and distributed uniformly in a rotationally symmetric 
array. Any single array element, depicted in Figure 1(b), is characterized by the usual log-periodic 
angle a and the scale factor r defined as the ratio of sequential radiating element radii (p„/pn+i). 
Additionally, the radial transmission line which excites the antenna has subtended angle ß and the 
width of each radiating element may be determined from a constant central arclength-to-width 
ratio r. We form a conical interdigitated log-periodic antenna, represented in Figure 1(c), by 
projecting or rotating the planar antenna onto a cone of half-cone angle 7. The parameter set 
(a,r,ß,~i,r) forms a natural search space over which a genetic algorithm may be employed to 
optimize a design. 

A typical application of this antenna is in the front-end of a wideband two-channel monopulse 
direction finding system. Here, two basic signal modes, the sum and difference modes, are received 
from which azimuth and elevation of the signal source mav be estimated. Substantial calibration 

This work was partially supported by the Naval Research Laboratory under contract number N00014-95-C- 
2044. 

2U.S. Patent No. 5,212,494 awarded 18 May 1993. 
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and measurement reductions are achieved if the antenna can be designed to be a circularly polar- 
ized receiver over the main lobe of the antenna. This forms the primary design constraint on the 
antenna. Additional constraints might include gain, input impedance, sidelobe levels and varia- 
tions of each of these over a log-frequency period. Physical size limitations impose yet another 
constraint on the search. Since no published set of design curves exists which allow the engineer 
to design directly this antenna, genetic algorithms form a logical approach to automate and study 
the design and operation of this unique log-periodic structure. 

3. DBOR Moment Method Solution 

The interdigitated log-periodic antenna, along with most other direction-of-arrival antennas of 
its class, is a discrete-body-of-revolution (DBOR) of order M. A sequence of M 360/M degree 
rotations of a single "generating" arm about the axis-of-symmetry with subsequent duplication 
generates the entire structure. Assuming a moment method surface patch model of this antenna 
which is also discretely rotationally symmetric, there will be a total of MN unknown current 
coefficients which must be determined where N is the number of basis functions per generating 
arm. Since MN is typically tens of thousands for IDLPAs, substantial computational savings 
will necessarily be enjoyed if we employ the discrete rotational symmetry to advantage. To this 
end, we express the familiar conducting patch moment method matrix equation in a less familiar 
double index-set form 

W] = Y,{Y,Zii[l-k]Ij[k]\        i = l,...,N,    l = 0,...,M-l (1) 
j = l   I /t=0 ) 

where an index in brackets refers to an arm and a subscripted index refers to a basis function on 
a given arm. The arm indices are ordered circularly such that the arm k geometry is obtained 
from arm / by a 2n(k — l)/M rotation about the axis of symmetry. The basis function indices are 
ordered identically from arm to arm. Thus, Vi[l] is the forcing function tested across basis function 
i of arm /, Ij[k] is the unknown current amplitude of the jth Rau-Wilton-Glisson basis function 
on arm k, while Zij[l — k] is the impedance matrix element representing the coupling from the jth 

unknown current on arm k to the ith basis function on arm I. The discrete rotational symmetry 
is manifested in the arm index difference [/ — k] in the coupling matrix. Recognizing the discrete 
circular convolution over indices k,l within the braces in (1), we discrete Fourier transform both 
sides of (1), yielding the reduced matrix equation 

VSH = £ Zti[m]I3[m]        i = 1,..., JV. (2) 
j=\ 

valid for the mth (m = 1,..., M) orthogonal discrete Fourier mode. Tildes denote a transformed 
variables. Solutions of (2) are orthogonal mode solution of (1). General excitations require the 
superposition of all M modal solutions to synthesize the complete solution. 

The rank of (2) is reduced by a factor of M from that of (1) resulting in an M2 savings in 
memory requirements and an order M3 savings in matrix factor time per mode assuming direct 
LU decomposition. Further reduction of numerical effort is obtained by noting that two-channel 
monopulse direction finding applications employ two orthogonal circular modes, the sum mode 
(??? = 1) and the difference mode (?7? = 2). Equation (2) need only be solved twice in a complete 
analysis of IDLPA radiation. 
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4. Parametric Grid Generation 

Engineering optimization of this antenna using computational electromagnetics involves three 
distinct processes. Geometry representation and gridding, numerical solution, and mensuration 
and assessment. While the second processes is inately computational and the third is readily 
automated, the process of geometry representation and subsequent grid generation suitable for 
computational electromagnetic codes is not well developed for automatic solution. While several 
successful efforts to marry CAD packages, grid generation and computational electromagnetic 
software have been developed, this approach is not conducive to automatic implementation in 
a design cycle due to the presence of the human interface to the CAD package. Even in non- 
automated approaches, the human-CAD interface may severely slow an iterative design process. 

To remedy these defficiencies, we developed a suite of software libraries which enables auto- 
matic generation of an antenna grid given only the antenna design parameters. This library is 
implemented in a three level hierarchy. At the highest level are the algorithms which mathemati- 
cally describe the antenna and sweep regions of space which define the physical surfaces or volumes 
of the antenna. The central level comprises packaged convenience routines with common primitive 
objects, e.g., spiral arms or conic sections, and algorithms for their subsequent structured decom- 
position into common elements, e.g.. triangle, quadrilateral, tetrahedral or hexahedral elements. 
At the lowest level in the hierarchy, a global database of nodes, edges, faces, etc., is formed which 
describes the decomposed structure. At this level, data, are also output as complete, properly 
formatted input files to commonly available electromagnetic analysis codes including the PATCH 
Code, FERM and EIGER. 

A small amount of invested time building a parametric representation of the antenna of interest 
at the top level of the hierarchy results in "immeasurable" savings in the design cycle time and 
allows automation of the engineering design process. Since the IDLPA geometry is completely 
defined by (Q,T, 8,"/,r) and its structural bandwidth, a grid generator has been devised which 
requires only these basic geometrical parameters to construct a grid suitable for computational 
electromagnetics and creates an input file to the conducting surface PATCH Code of Sandia 
National Laboratory modified for DBOR symmetry as described in the previous section. 

5. Genetic Algorithm Implementation 

We employ a steady-state replacement genetic algorithm with binary encoding of the search 
parameters, single-point crossover with mutation and power-law fitness scaling. Cost-functions 
a are chosen to achieve desired 8 and ^-component sum-mode pattern beamwidths Be and B$, 
respectively, over a log-frequency period. A useful and simple cost-function for minimization is 

i 
i * 

TT L[BW,(fn) - BeY +    — Y,\BW,{fn) - B,r- (3) 
A7 „=i \ -'V „=i 

where /„ is the nih frequency in a log-frequency period sampled Nj times and BWg and BW$ are 

the beamwidths of the 6 and o component sum-mode patterns, respectively, taken from defined 
azimuthal cuts: We choose the design goal beamwidths Be and B^ to control the desired receive 
polarization properties as well as the component beamwidths. 

The computational cost of evaluating the genetic algorithm is driven by three factors: 1) the 
size of the moment method problem, 2) the wide operational bandwidth over which the antenna 
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must be evaluated and 3) the large "antenna populations" which are evaluated in the genetic 
algorithm. Use of DBOR symmetries addresses the first factor. We address the second by evalu- 
ating the cost function over a single log-frequency period. Since the structure is log-periodic, one 
log-frequency period characterizes the entire operating bandwidth assuming structure end-effects 
may be neglected. The final factor is addressed, in part, through parallelization of the genetic 
algorithm. Evaluation of the genetic algorithm cost function is "embarrassingly parallel" on a 
per generation basis. Since genetic algorithm execution time is dwarfed by the time required to 
evaluate the cost function, a network-parallel approach is employed for cost function evaluation. 
Load-balancing and control over the network are achieved through the use of freely available net- 
work queuing software. This implementation offers many advantages including real-time control 
over when a given computer on the network will be available to the genetic algorithm and the 
execution priority of the cost function. 

6. Results 

We optimized the sum-mode beam-shape of a six-arm IDLPA where r = 0.921. We searched over 
a 24° < 2j < 50° and 20" < a < 55° space to minimize the cost-function in (3) with -10 dB 
design beamwidths Be = B^ = 80" and Nj = 5 samples in a log-frequency period. The initial 
random population, represented in Figure 2(a), is 50 members followed by 8 member generational 
replacement. In Figure 2(b), we depict the results after 9 generations. Symbols on the plot 
represent parameter values which meet the sum-mode design specification that both Ee and E$ 
have a -10 dB beamwidth with an RMS deviation from 80 degrees of less than A". Using the 
genetic algorithm, we not only found a design which met beamwidth specifications, we identified 
trends not easily determined, i.e., the high dependence of the beam design on a with an almost 
lack thereof on cone-angle. In Figure (3), we demonstrate with pattern cuts that disparate values 
of cone-angle do yield nearly identical main beam patterns. The primary difference between the 
designs is the expected sidelobe level increase with increasing cone-angle. Given this information, 
a designer can make tradeoffs such as reduced antenna size (length) accompanying larger cone- 
angle with increased front-to-back ratio accompanying smaller cone-angles. Further results with 
higher dimensional searches will be presented. 

7. Conclusions 

A genetic algorithm approach to wideband rotationally symmetric log-periodic array design is 
presented. The approach is made computationally feasible through the introduction of symmetries, 
through automatic, parametric grid generation, through evaluation over a single log-frequency 
period and through a network-parallel implementation using freely available network queuing 
software. Not only did use of the genetic algorithm identify engineering solutions, but also trends 
in the behavior of the conical interdigitated log-periodic antenna. 
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(a) 

t = Pn'Pn+l 
r„= pna / wn 

Figure 1. (a) A planar six-arm interdigitated log-periodic antenna geometry, (b) a single generating 
arm with log-periodic parameter definitions and (c) a conical six-arm interdigitated 
log-periodic antenna with half-cone angle y. 
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Abstract 

A simple genetic algorithm and the GENOCOP DI software package are 
each integrated with Numerical Electromagnetics Code Version 4.1 (NEC4.1) 
for the purpose of determining the geometry of a wire antenna to be used as a 
ground antenna. After ten unique trials of each integrated routine, the resulting 
fitness values are compared. Also, a direct comparison is made between the 
antenna designs achieved in terms of power gain, azimuthal symmetry and input 
impedance. 

1   Introduction 

The impact of the earth upon the fields and power radiated by near-ground antennas 
has been extensively studied in both emperical and theoretical domains. Understood 
to a lesser extent is the impact of antenna geometry upon the power radiated at low 
elevation angles. No effort has been made to optimize the antenna geometry given the 
real-earth consideration. 

A wire-antenna design is clearly desirable for the type of context associated with a 
remote intrusion monitoring system, but because of the problem complexity combined 
with the design constraints, a classical design approach is impractical. A stochastic 
search method, the genetic algorithm (GA), not only makes a solution attainable, it 
finds a solution that performs better than thought possible. 
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Thus, the research problem is simple: to use a GA to optimize a wire antenna ge- 
ometry in the presence of a less-than-perfectly-conducting half-space for the objectives 
of power gain, symmetry of radiated power in azimuth, and matched input impedence. 
The reason for the first two objectives is obvious given the design context and the 
performance of existing designs. Meeting the last objective, that of matching the im- 
pedence will allow maximum power transfer, a topic reminiscent of a basic circuits 
course. 

2   Approach 

The first step in the approach to solving the research problem was to develop GAs 
which interface with the moment method code (MoM), Numerical Electromagnetics 
Code Version 4.1 (NEC4.1), to develop a wire antenna geometry. The wire endpoints 
become the features that the GAs search to find the optimal design. The fitness is 
determined by a weighted sum of multiple objectives. The next step is to compare the 
resulting antenna design found by the simple version of the integrated GA with one 
found by the integration of NEC4.1 and the more sophisticated GA software package, 
GENOCOP in, using a simple geometry definition. The third and final step is to 
develop the method by which the resulting genetically-designed antennas are to be 
evaluated. Not only will the gain be investigated, but symmetry and input impedance 
are investigated. 

• The first of the integrated codes is titled the simple genetic algorithm (SG A) because 
it is based upon the fundamental principles behind the genetic methodology. The second 
of the two codes takes advantage of a GA software package developed by Zbigniew 
Michalewicz called GENOCOP III, a highly sophisticated program developed over 
the course of seven years, and its associated integrated code will be known as the 
GENOCOP ni-GA (GGA). Additionally, some issues in interfacing with the NEC4.1 
code are investigated. 

3   Results 

For the runs incorporating the basic series geometry also investigated by Altshuler 
and Linden in [1], four wires were investigated to allow some complexity to enter 
the design while keeping the number of wires to a reasonable level to avoid a messy 
conglomeration of wires. For this simple geometry, the antennas obtained by both the 
SGA and GGA are directly compared. In order to make a comparison, the number of 
fitness evaluations was limited for each algorithm. For the SGA, a population of 50 
strings was used and it was allowed to iterate for 100 generations, resulting in a total of 
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Best Fitness 
Run* SGA GGA 

1 70.1 75.5 
2 72.4 73.0 
3 69.8 69.8 
4 70.1 78.8 
5 70.0 70.2 
6 70.1 73.2 
7 60.1 75.5 
8 70.0 74.2 
9 70.1 78.7 
10 70.0 70.4 

Mean (ß) 69.3 73.9 
Variance (c2) 9.9 9.6 

Table 1: Comparison of SGA and GGA Results for the Four-Wire Series-Connected 
Geometry 

3020 fitness evaluations. Similarly, the GGA was limited to a maximum of 3020 fitness 
evaluations. The results of this experiment involved 10 unique runs for both GAs. 
The best fitness obtained by each of the GAs for each run is shown in Table 1. The 
superiority of the GGA is evident by a significantly higher mean and a lower variance 
in the trials. This result proves that the variety of crossover and mutation operators 
used by GENOCOP m performs a more adequate search of the landscape. 

3.1   Optimized Geometries 

From the second run of the SGA, the antenna with the highest fitness is displayed in 
Figure 1. The antenna with the highest fitness found by the GGA came from the fourth 
run and has a geometry shown in Figure 2. By simply looking at the geometry, it is not 
perfectly clear why this antenna performs better than any other arbitrary conglomeration 
of wires. However, the GGA design exhibits some definite characteristics that would 
be expected for this application. A mostly vertical element rises from the source and 
is augmented by some sort of top-loading structure. The SGA design is a little more 
peculiar but still exhibits the height characteristic. 
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(0.023,-0.132.1*97) * 

H>.038,-O361;1-229) A 

..(0.336.-0.145.1.752) 

^(0.359.^-0578,0^49) 

Figure 1: Four-Wire Geometry Found by SGA 

Figure 2: Four-Wire Geometry Found by GGA 
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3.2   Power Gain 

Elevation cuts of the power gain are shown in Figures 3 and 4. On each plot, the gain of 
the A/4 rnonopole is also given to provide the opportunity for a direct visual comparison 
with the GA designs. 

-Monopole 
' SGA Design 
- GGA Design 

Figure 3: Four-Wire Geometry: Elevation Cut of Power Gain at an Azimuth of <f> = 0° 

The power gain plots in Figures 3 and 4 are particularly disturbing from a user 
point-of-view because they show a major deficiency in the SGA design. For angles of 
6 > 67.5, the monopole gain is at least 4 dB greater than the SGA design. For the 
other azimuth cuts given, this deficiency is not present, but it is this lack of symmetry 
in the SGA design that differentiates it from the GGA design by a lower fitness score. 

The symmetry of the gain for the GGA design is very good considering its asym- 
metrical geometry. This result is attributable to its long, mosdy-vertical wire which 
serves a monopole function. The height of the vertical wire in the GGA design is greater 
than that of the RIMS monopole by nearly a meter, which explains its superiority in 
gain at the lower elevations. 

For the GGA design at most all of the azimuth positions, the GGA design offers a 
1 dB improvement in power gain over the monopole at 6 = 67.5°. This improvement 
increases to approximately 4 dB at 0 = 82°. 

At several azimuth positions, the SGA design exhibits better gain (up to 3 dB for 
9 > 67.5), particularly at <j> = 90°, 135°, 270°, and 315°. However, this does not make 
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-Monopole 
SGA Design 

- GGA Design 

Figure 4: Four-Wire Geometry: Elevation Cut of Power Gain at an Azimuth of 4> = 45° 

the SGA design a better antenna for the RIMS application because of the previously 
discussed lack of symmetry in its gain patterns. 

3.3   Input Impedance 

It is clear from the Smith Chart of Figure 5 that the four-wire antenna designed by 
GGA has a far superior impedance match at the center frequency than the monopole. 
The SGA design is less well matched than the GGA design but is still better than the 
monopole at the center frequency. When moving away from the center frequency, 
however, the reactance of both designs becomes very large. 

4   Conclusions 

Many in the electromagnetics community are using simple genetic algorithms for 
optimization. The direct comparison in this research effort hopes to show that the 
elementary GA might not be the most extensive search tool given the availability of 
sophisticated GA codes from the computer science community. 

The more complex GGA algorithm proved to be more capable in both domains. In 
the GA domain, its variety of crossover and mutation operators made it possible for 
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Monopole 
SGA Design 
GGA Design 

Figure 5: Input Impedance of the GA Designs vs. a Typical RIMS Monopole 

the GGA to find a wire-geometry with a high fitness not achievable using the SGA. 
In the antenna domain, the resulting antenna produced a much more desirable antenna 
because the radiation from the SGA design was not very symmetrical. 

5   Acknowledgments 

The authors gratefully acknowledge the following people for their help and advise: 
Dave Van Veldhvizen, Robert Marmelstein, Gary Thiele, Gary Lamont, Peter Collins, 
Jeff Berrie, Enrol English, Leo Kempel, Eric Walton, Ben Munk, Gerald Burke, and Ed 
Altshuler. 

References 

[1] Derek S. Linden and Edward E. Altshuler,  "Automating Wire Antenna Design 
Using Genetic Algorithms", Microwave Journal, pp. 74-86, March 1996. 

1086 



Array Failure Correction with a Genetic Algorithm 

Brian Beng Kiong Yeo and Yilong Luf 
School of Electrical and Electronic Engineering, Nanyang Technological University 

Singapore 639798, Republic of Singapore 
t Fax: (+65) 792 0415, E-mail: eylu@ntu.edu.sg 

Abstract— Array failure correction has been achieved using a genetic algorithm (GA). 
One is employed in this paper to re-calculate the new attenuation ratios and phase 
differences among the remaining functional elements of a digitally beamformed linear 
array. The same method may be applied for different failure conditions. A double 
element failure correction can make use of the chromosome obtained from correcting 
the failure of a single element, if the latter is one of the two damaged elements in the 
former scenario, and so forth. Though the nature of GA makes real-time computational 
results unavailable, the normalised weightage of the remaining elements may be pre- 
calculated and stored in the memory of the beamforming computer. 

I. INTRODUCTION 

Instead of replacing the defective array elements of a phased-array antenna, the attenuation 
or power level and the phase differences of the remaining elements may be re-calculated to 
produce an array pattern close to the original. The idea is not new. More recent applications 
in satellite or extra-terrestial communications, where antenna damage caused by radiation 
or age cannot be rectified by element replacements, have renewed the interest in this area 
of research. 

In addition, the mutual coupling effect among the antenna elements may result in an array 
pattern output which is different from that desired. Digital beamforming using.an array of 
analogue-to-digital converters may resolve the above problem. Consequently, the motivation 
to study the re-distribution of elemental weightage or power, in face of mutual coupling or 
less than optimum performance of one or more elements. So that an array pattern that is 
much closer to the original specification can be produced. 

Currently, there are two algorithms aimed at reducing the sidelobe levels of arrays with 
defective elements. The first [1] reconfigured the amplitude and phase distribution of the 
remaining elements by minimizing the ratio of the average peak sidelobe power level to 
the power in the main beam, via a conjugate gradient method. The second algorithm [2] 
was shown to replace the signals from failed elements in a digitally beamformed receive 
array. Experimental data further confirm its operation for the case of one signal and one 
interfering source. 

On the other hand, GA is a stochastic search and optimisation technique. It searches from 
a population of points, not a single point. It works with the coding of the parameters and 
not the parameters themselves. It uses objective function information instead of derivatives 
or other auxiliary knowledge. In addition, it relies on probabilistic transition rules and not 
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deterministic rules. However, due to its slow convergence, it is not suitable for real-time 
applications. 

Nevertheless, in [3] Haupt applied GA to determine which element should be on, in large 
thinned linear and planar arrays to obtain low sidelobes. Yan and Lu [4] then used a GA 
to restrict the phase and magnitude to certain discretized values for easy implementation 
by commercially available digital phase shifters and attenuators, thereby greatly reducing 
the complexity and cost of array antennas. 

In this article, a GA based on [4] is applied to array failure corrections. Since the above 
is a much more difficult task than simple sidelobe reduction of a uniformly spaced linear 
array, considerable improvement and new additional features have to be introduced. The 
approach using the GA is elaborated in the following text, with the assumption that the 
reader has sufficient background knowledge on the relevant antenna theories. 

II. THE GENETIC ALGORITHM 

Natural evolution is a search for the fittest individual in species-space. The success of life 
on earth demonstrates the computational power of this search process. 

Based after natural evolution [6]-[7], genetic algorithms (GAs) capitalize on tools that work 
well in nature. GAs often succeed where other algorithms fail. It is considered a sophisti- 
cated search algorithm for complex, poorly understood mathematical search spaces. 

GAs mimic biological evolution to solve computational problems. Living things are encoded 
by chromosomes, with GAs one encodes the problems in the form of data structures. Thus, 
GAs are capable of arriving at an optimal solution without the benefit of explicit knowledge 
about the problem area. 

A.  Chromosome Structure 

Until [8], most GAs use binary coding and binary genetic operations. The proposed ap- 
proach however, applies floating-point genetic operations on complex array weighting vec- 
tors. 

Hence, each chromosome is a vector which has a length equivalent to the number of array 
elements. It represents the normalised weighting coefficients, wn, as follows: 

w={»i,i»21...,i«jv},»„eC*, (l) 

where Cn is the set or subset of all complex numbers and 

N 

AF=Y,wn* ejkndcose (2) 

is the array factor of a linear array. 
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size{cPop3') = P * 2 - AT (3) 

The best P children out of cPopZ' are stored into cPopZ. 

EMP usually yields the best sample among the three methods. It is the only method that 
allows the fittest individual to procreate freely with the rest of the population. However, it 
requires nearly twice the computation time as compared to the other two methods. Even- 
tually, four populations are available for comparison, namely the original Pop, cPopl from 
BMW, cPop2 from AFP, and cPop3 from EMP. Subsequently, a ranking exercise sorts out 
the best P individuals to produce tPopl. Meanwhile, a multi-modal non-uniform mutation 
operator is applied to a side population mPopl, comprising of P copies of the best indi- 
vidual prior to the mating operation above. The Gaussian distribution shape parameter 
S, for the amount of mutational change, is adaptively reduced once stagnated growth is 
detected. To ensure intrinsic parallelism, the same mutation operator is performed across a 
copy of the original population, Pop, giving mPop2. The best P individuals from mPopl 
and mPop2 are selected to produce tPop2. Finally, the new generation of P individuals to 
form Pop are those from the best of tPopl and tPop2. 

D. Fitness Evaluation 

A template, formed by the shape of the main lobe and the specified sidelobe level (SIX), 
is cast over the array pattern, produced by each candidate, to compute their cumulative 
difference as a form of fitness measure, in dB. Thus, the ideal array pattern must conform 
to the original main beam shape with the specified SIX. 

E. Termination Criteria 

The maximum number of generations must be defined together with the desired fitness level. 
By satisfying either of the above, the GA will terminate. A log file of the GA progress in 
terms of the increasing fitness per generation, and the matrix containing the chromosomes of 
the current population are saved onto the hard disk. By reviewing the above data, a better 
control of the GA convergence through fine-tuning the shape S of Gaussian distribution or 
introducing new heuristik marriage routines can be achieved. 

F. Convergence Observation 

The best sample of each generation may be produced through linear crossover, after one 
of the selection methods, or from a mutated individual. Usually, the offsprings of fit indi- 
viduals from the previous generation show greater fitness, in the beginning of a GA run. 
However, when approaching convergence, the mutation operation may tend to produce 
better individuals. 

A lower shape value will result in rapid convergence in the beginning of a GA run, but ends 
up with premature stagnation, far from the desired fitness. Too high a S value results in a 
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B. Initial Population 

An initial population of at least 100 random samples is generated. The weighting vector 
or chromosome, w<f, of the damaged array pattern and that of a Taylor (one-parameter) 
synthesized array, vrt, with an identical beamwidth are then added, to replace two of the 
weakest individuals among the initial population. 

Their insertion helps to improve the rate of convergence. In fact, It is observed that the 
best individual grown for mth element failure correction, should be inserted into the initial 
population of a double element failure, if one of the failed elements is in the mth position. 
In so doing, the rate of convergence is observed to be increased depending on the position 
of the failed elements. 

C. Reproduction 

Ranked-based fitness assignment sorts the individuals in a descending order of fitness for a 
population Pop of P individuals. Mating is performed by three different selection methods 
using duplicate populations: Popl, Popl and Pop% respectively. 

N-point linear crossover is performed [4], where N — 2, thus two parents produce two 
children. 

1. Best-Mate-Worst (BMW) 

Adapted from [4] and [5], BMW effectively spreads the superior genetic material in Popl 
to give cPopl. It is maximally disruptive, but weaker individuals with any desirable traits 
do get a chance to produce offsprings with stronger partners. 

In BMW, the best gets to mate with the worst, and second best with the second worst 
individual. Thus, the difference in fitnesses between the best and the worst individuals is 
reduced. In addition, the bias for an elitist group is low. 

2. Adjacent-Fitness-Pairing (AFP) 

AFP marries two individuals with adjacent fitnesses. Such that the best marries the second 
best, the third best marries the fourth best and so forth, resulting in cPopl. It is highly 
conservative of genetic information but may result in premature convergence. However, 
AFP ensures the union of strong individuals whose offsprings may prove to be fitter than 
their parents. 

In [5], a similar method known as fit-fit selection, steps through the ordered list of individuals 
of a population that does not remain static for an entire cycle. Unlike [5], AFP does not 
allow any individual to breed twice. Moreover, the population Pop2 that it works on stays 
static throughout the mating process. 

3. Emperor (BMP) 

The best individual in Pop3 gets to mate with every other sample in the population. The 
population of children, cPopZ''. so generated has a size 
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slower convergence rate with a much steady and continuous improvement in the fitness of 
future generations. 

III. SIMULATION RESULTS 

A Dolph-TschebyschefF linear array design with a SL.L of-35dB is used as a reference. The 
array consists of 32 identical dipoles, each spaced at half a wavelength apart. 

A. Single Element Failure Correction 

Fig. 1 depicts the three fitness progress curves for the different main beam directions. 
Notice that in the broadside case, the cumulative error after 200 generations is the highest. 
More importantly, convergence is observed for all the above cases at around 200 generations. 

Shown in Fig. 2(a), (b) and (c) are the corrected array patterns for a ö'^-element failure, 
with the main beam pointing at broadside, 52 degrees and 138 degrees respectively. All 
corrected patterns have a SLL of at most -35.5dB, and their main beams retain practically 
the same shape and half-power beamwidth as the original. 

Fitness progress chart lor 3 different beam directions 

Fig. 1. Fitness progress curves, obtained from an average of 20 runs, with main beam directed at(i) broadside 
- dotted ,(ii) 52 degrees - dot-dashed and (iii) 138 degrees - dashed. 

B. Double Element Failure Correction 

Now, if a 2nci-element failure follows, the fitness progress curve, obtained from an average of 
20 runs, is illustrated in Fig. 3. Similarly, convergence is observed at around 200 generations, 
even though two elements have failed. This is made possible by the insertion of the solution 
for a ö^-element failure correction. Or else, more generations will be required before the 
GA reaches a satisfactory fitness level. 
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Corrected power pattern for Sth—element failure, main beam at broadside 

120 140 ISO ISO 

(a) 

Corrected power pattern for 5th—element failure, main beam at 52 degrees 

Corrected power pattern for Sth—element failure, main beam at 1 38 degrees 

Fig. 2. (a) Corrected field pattern with main beam at broadside, (b) at 52 degrees (c) 138 degrees. 
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Fitness progress chart 

Fig. 3. Fitness progress curve with main beam directed broadside. 

The corrected far-field pattern for 2nd- and o'^-element failure is shown in Fig. 4. The 
highest SIX is -35dB. Corrected patterns for other main beam directions are not shown, 
since they are essentially similar. 

Corrected power pattern for 2nd— 6V 5th—element failures, main beam at broadside 

SO 100 120 
Azimuth (degrees) 

Fig. 4. Corrected beam pattern for 2nd- and 5tft-element failure. 

Usually, the number of generations required to obtain a satisfactory fitness value does 
increase with the number of failed elements. However, the increase in the number of gen- 
erations is largely dependent on the position of the failed element(s). This applies even if 
the solution for a single element failure correction is planted in the initial population for a 
double element failure correction, and so forth. 

IV. CONCLUSIONS 

A genetic -algorithm is proposed for the (32-element) array failure correction of single and 
double element failures, which translate to 3.125% and 6.25% array failure percentage re- 
spectively. For a triple element failure (or 9.372% failure), the solution for a double element 
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failure can be included in the initial population for the correction of the former, if two out 
of the three failed elements are identical to those involved in the latter, and so forth. 

The genetic algorithm demonstrates the possibility of its application for non-linear array 
synthesis, since damaged linear arrays are essentially non-linear in nature. Though the 
rate of convergence may be too slow for real-time applications, the results for different 
combinations of element failure may be stored in the memory of a digital beamformer. It 
can then dynamically set the weight of each element, if an array failure scenario of a similar 
nature arises. 
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Abstract 

This paper describes how to synthesize a tapered resistive grid that produces a desired backscattering 
pattern. The grid consists of equally spaced, equal width strips. Each strip has a resistivity that is found 
using a genetic algorithm. Physical optics is used to calculate the backscattering. Results are compared 
with Method of Moments calculations. 

1. INTRODUCTION. 

The control of backscattering patterns using resistive surfaces has received considerable attention in the 
literature. Resistive tapers for strips have been synthesized to produce bistatic scattering and 
backscattering patterns similar to those of antenna arrays [1]. Physical optics (PO) proved useful in the 
resistivity synthesis, because the resistivity significantly dampened current interactions on the strip. 
Closely spaced grids have backscattering patterns similar to those of a continuous strip of the same size. 
The problem with physical optics backscattering calculations is that any perfectly conducting strips in the 
grid make the calculations inaccurate. Figure 1 shows the maximum return from a finite grid of 8 
resistive strips spaced 0.5X with n=2. The physical optics calculations are compared with more accurate 
method of moments calculations. Interactions between the strips are strong when the strips are perfectly 
conducting; however, the interactions are considerably smaller when the strips are resistive [2]. 
Consequently, PO is a viable technique for calculating the induced currents on the strips. Note that the 
MOM and PO results converge as the strip width approaches 0.5?, or the eight separate strips become 
one. 

This paper introduces a method of optimizing the resistivity of the strips in the grid using a genetic 
algorithm. The objective is to reduce the maximum relative sidelobe level of the backscattering pattern. 
Genetic algorithms mimic natural selection, reproduction, and mutation to arrive at an optimum solution. 
The genetic algorithms are slow but can find an optimum solution to a problem with a large number of 
parameters. Excellent results are obtained from reasonable resistive tapers. 
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2. APPROACH. 

Figure 2 shows a diagram of a finite grid of periodic resistive strips that lies along the x-axis. The 
incident electric field is parallel to the edges of the strips. A single strip with a constant resistivity has an 
induced current density given by [1] 

.5+T;sm4>0 
(1) 

where 
<j>o = angle of incidence as measured from the x-axis 

X = wavelength 
T| = normalized resistivity of strip 

The backscattering RCS from a single strip is calculated from 

K<*) = 10.5 + 
sin^ 

77 sin ^ 
-e^'^dx' (2) 

where § is the angle of observation.     Placing many strips side-by-side to form a grid results in a 
composite RCS of 

ofy)- 
sin^ y     f sing       cikx'™*dxx 

(3) 

where 
M = total number of strips 
Xm = distance to center of strip m 
w = width of strip 
rim = resistivity of strip m 

If we assume the grid is symmetric about its center then 

j(t)=k 

where 

R  = 

^wRm cos(2fct„ cos^)Sa(fcwcos^) 
m-l 

sin^ 
0.5 + 77„sin^ 

(4) 

(5) 
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Sa(x)=S-^ (6) 
x 

A genetic algorithm encodes the resistivity parameters into a binary sequence that undergoes numerical 
evolution to arrive at the optimum resistivities that yields the lowest possible maximum relative sidelobe 
level. 

3. RESULTS. 

A grid having 40 uniform resistive strips 0.1X. wide and spaced 0.U apart has a maximum relative 
sidelobe level of approximately -13 dB. Keeping the same spacing and strip widths, but optimizing (with 
5 bit accuracy for resistivity values 0<TI<1.9375) for the resistive taper that produces the lowest 
maximum relative sidelobe level results in the optimized backscattering pattern shown in Figure 3. The 
genetic algorithm optimization used physical optics (PO) to evaluate the sidelobe level. In this case the 
goal is to reduce the maximum relative backscattering. The algorithm arrived at a maximum relative 
sidelobe level of -27 dB. A plot of the optimum resistivity is shown in Figure 4. Figure 3 also shows the 
method of moments calculation of the backscattering pattern for the optimum resistivity shown in Figure 
4. The method of moments plot shows a maximum relative sidelobe level of about -24.3 dB. It is 
interesting to note that the PO and MOM patterns have approximately the same relative characteristics. 
The MOM pattern has a much higher peak than the PO pattern, because PO is directly proportional to the 
surface area, while the MOM contributions include interactions between the grid elements. 

4. CONCLUSIONS. 

Resistive tapers can be approximately synthesized to control the backscattering patterns from a grid of 
strips using physical optics and genetic algorithms. Agreement between PO and MOM improves as the 
resistivity of the grid elements increase. 

5. REFERENCES 

[1] R. L. Haupt and V. V. Liepa, "Synthesis of tapered resistive strips," IEEE AP-S Trans., Vol. 35, No. 
ll.Nov 1987, pp. 1217-1225. 
[2] R. L. Haupt, "Backscattering from aperiodic resistive grids using physical optics," 1995 National 
Radio Science Meeting Program and Abstracts, Boulder, CO, Jan 1995, p. 292. 

1097 



15 

10 

-5- 

-15 

-20 

solid line MOM 

dashed line PO 

0.1 0.2 0.3 0.4 
width of strip in wavelengths 

Figure 1. Comparison of the maximum RCS values for MOM an PO for a grid of 8 strips with r|=2 
and spacing = 0.5X as the element widths vary. 
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Figure 2. Model of a grid of strips. 
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solid line MOM, max sll= -24.34 
dashed line PO, max sll= -27.03 

Figure 3. RCS backscattering of the grid in Figure 3. 
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Figure 4. Optimized resistivities for a grid of strips. 
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Abstract 

This paper presents a method of synthesising sum patterns yielding aperture distributions without 
edge brightening and high efficiency. The method uses the simulated annealing technique to introduce 
small perturbations to the root positions of linear and circular Taylor patterns. In the process, a cost 
function, which takes into account some design parameters such as the sidelobe level, the smoothness 
of the amplitude distribution, and the efficiency, is minimised. 

1. Introduction 

A common feature of equal sidelobe level sum patterns possessing deep nulls (linear Taylor [1] and 
circular Taylor [2]), is to have aperture distributions with large excitation peaks at the ends (non- 
monotonic). These peaks, called edge brightening, are indicative of an increase in the tolerance 
sensitivity [3]. Also, this rapid variation in the current (severe inverse tapering near the edge of the array 
with maximum efficiency) is difficult to approximate with a discrete array and may be unrealisable in 
a practical size [4]. 

Recently, a technique, based on filling the nulls of the patterns, allowed to alleviate the edge 
brightening in the sum patterns distributions [5]. However, this improvement requires the use of a 
complex aperture distribution and yields a loss in the efficiency when comparing to the conventional 
pattern with deep nulls. 

In this work, the simulated annealing technique [6] is used to calculate small perturbations to the 
roots of linear and circular Taylor patterns and synthesise those associated to a high efficient amplitude 
distribution without edge brightening. These parameters as well as the sidelobe level of the radiation 
patterns are controlled by means of a given cost function, which is minimised. 
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2. Description of the method 

a) Linear apertures: 
The linear Taylor pattern [1] is given by the expression: 

F(u)- 

n-l 

n 
sin(7ta)   "=1 

u2 

1-— 
2 

■Kit       »-1 n 
11=1 «2. 

(1) 

The corresponding aperture distribution can be calculated by: 

g(0=— 
la 

»-1 r 

F(P)+2Y, F(>») cos^-2- (2) 

where u=(2aJX) cos 6, with 2a the total length, in terms of wavelength X of the continuous linear 
distribution, and the aperture range -a<X,<,a. 

The method begins with the positions of the roots «, calculated by the Taylor technique [1] and 
introduces small perturbations to them 8«, using the simulated annealing method [6]. These 
perturbations are calculated by minimising a given cost function which is defined in the following way: 

C(&«l)-c1-|i^Ai1l+c2-r+e,-Ti+C4/l.   i=\,2,...,n-\ (3) 

where \I„JI^,\ is the dynamic range ratio, F measures the smoothness of the amplitude distribution (it 
allows to avoid the edge brightening), q are the weights of each term which depend on the design 
parameters, and rj is the aperture efficiency defined as the ratio between the directivity peak of the 
obtained distribution to the directivity peak of the uniform distribution, both of the same length. Finally, 
/ allows us to take each sidelobe peak under control and is defined as 

0 if SLLlo<SLLi4 

{SLLi0SLLi4f if SLL^SLL^ 
i=l, 2,..., n-l (4) 

in which SLLiB and SLLU are the obtained and desired peaks in dB of the irA-sidelobe. Note that/ in 
(4) does not specify a strict level for each sidelobe peak, but a maximum allowed level. This gives to 
the algorithm the possibility of finding that optimal topography of the pattern that best verifies the 
design specifications. 
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b) Circular apertures: 

For this case, the procedure is the same as the used for linear apertures. The circular Taylor pattern 
and its corresponding aperture distribution are now given by [2]: 

*■(«)=■ 

n 
y,(7tu)     »»1 

2 

TCu      »-1 n u2 

2 

(5) 

S(P) = 
it2 „.i ^o(Yi^) 

^(Yi-^P/a)) (6) 

where n=(2a/X)-sin6, with 2a the diameter of the circular boundary of the aperture, p the radial 
coordinate at the aperture, and y,m is the root of the Bessel function J,, defined by J,(7ty lm)=0, with 
m=0,l,2,... 

As before, the simulated annealing technique is used to niinimise the cost function (3) introducing 
small perturbations to the roots of the circular Taylor patterns. 

3. Results 

a) Linear apertures: 

Let it be desired to synthetise a pattern with a sidelobe level requirement of-20 dB. The initial roots 
were obtained from a linear Taylor pattern with a=5X, SLL=-20 dB, and n-6 (this value of n 
corresponds to a Taylor pattern of -20 dB with maximum efficiency [4]).The positions of the roots, the 
efficiency of the pattern as well as the dynamic range ratio of the aperture distribution \Imax/Imi„\ are 
shown in the table I. In the figures 1 and 2, the pattern and its corresponding aperture distribution are 
shown (dashed lines). 

Using our method, it was possible to obtain a pattern with a smoother amplitude distribution 
keeping a high efficiency. The final pattern and the aperture distribution are shown in the figures 1 and 
2 respectively (solid lines), whereas Table I shows the final roots. As it can be seen, the method 
achieved to eliminate the edge brightening and reduce the dynamic range ratio of the aperture 
distribution without a significant loss in the efficiency compared to the Taylor pattern (of only about 
0.2%). 
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TABLE I: Positions of the roots, dynamic range ratio and efficiency of the linear Taylor 
pattern (a=5A, SLL=-20 dB, n=6) and that obtained after the optimisation. 

Roots positions (ut) i* max* mini V 

Linear Taylor 1.156 1.910 2.876 3.899 4.944 1.75 0.966 

Final pattern 1.162 1.928 2.936 4.029 5.018 1.54 0.964 

u=(2a/x) cos e 

-3-2-1012345 

Fig. 1. Power 
SIX=-20 dB, 

patterns corresponding to a linear Taylor (a=Sk, Fig. 2. Amplitude distributions corresponding to a linear Taylor pattern 
B =6) and that obtained after the optimisation.      (fl=5X, SLL—20 dB, if=6) and that obtained after the optimisation. 

b) Circular apertures: 
In this case, the design sidelobe level was -25 dB. The initial roots were obtained from a circular 

Taylor pattern with a=5A., SLL=-25 dB, and n=5 (optimal in terms of the efficiency) [7]. Table II 
shows these roots, the dynamic range and the efficiency of the Taylor distribution. The power pattern 
and its aperture distribution are plotted in the figures 3 and 4 respectively (dashed lines). 

Using our method, it was possible to obtain a pattern without edge brightening and even achieving 
a slight improvement in the efficiency (since the circular Taylor pattern has a SLL of about -25.8 dB 
and not strictly -25 dB). Table II presents the results, whereas the resulting pattern and the aperture 
distribution are shown in the figures 3 and 4 (solid lines). 

Table II. Positions of the roots, dynamic range ratio and efficiency of the circular Taylor 
pattern (a=5\, SLL—25 dB, n =5) and that obtained after the optimisation. 

Roots positions (uj ]r max*min\ V 

Circular Taylor 1.403 2.126 3.102 4.157 2.25 0.940 

Finalpattern 1.398 2.135 3.195 4.266 1.93 0.947 
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Fig. 3. Power patterns corresponding to a circular Taylor (a=5X,    Fig. 4. Amplitude distributions corresponding to a circular Taylor 
SLL—25 dB, B=5) and that obtained after the optimisation. pattern (a=5A, SLL—25 dB,  n=S) and that obtained after the 

optimisation. 

4. Conclusions 
A new technique of synthesising sum patterns yielding linear and circular aperture distributions 

without edge brightening, and high efficiency has been described. The method perturbates the roots of 
the linear and circular Taylor patterns through minimisation of a given cost function by means of the 
simulated annealing technique. The process is fast, taking about two minutes on a 200 Mhz Pentium 
processor for the examples shown, in which the optimal perturbations were found to be very small. This 
method is extensible to difference as well as to shaped beam patterns for both linear and circular 
distributions. The obtained apertures may be useful in reflector antenna applications because peculiar 
illuminations such as those with a spike near the edge may be difficult to realize in practice. 
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Abstract - Most boundary element techniques have been formulated directly using either the vector potential or the B and E fields. 
Static and time harmonic, linear and non linear problems (but not transient) can be formulated using surface currents which are 
placed on the skin of every ferrous or conducting region. In static problems, this surface current completely replaces the ferrous 
medium. Time harmonic problems require a double layerof surface current Estimates of errors both in force and field calculations 
can be obtained by the secondary calculation of an intermediate set of surface currents which account for any discontinuity in the 
tangential component of the H field. Confirmation of this approach is obtained by comparing forces and fields with those obtained 
in two international TEAM workshop problems. 

Index Terms - Eddy Currents, Forces, Error Prediction 

INTRODUCTION 

Boundary element approaches have classically employed the vector potential A or the field quantities B and E [1], [2]. 
These quantities are chosen in an integral equation format in such a way as to insure the continuity of normal B and tangential 
H. An alternative is to lace the material interlaces with surface currents, and to chose these unknown surface currents to insure 
the continuity conditions on B and H. This approach has the advantage that the computation of fields and forces can be 
performed using Biot-Savart type integrals rather than derivatives. 

Boundary element methods (SEM) lack convenient quantities such as energy norms having a clear physical interpretation 
in predicting errors [3]. A second objective in this research in addition to outlining how this technique is used accurately for 
predicting these forces is to offer another technique for computing an error norm. In a previous paper by the authors, such 
an error norm was outlined and defined primarily in a static field arena [4]. In this paper such a technique is developed and 
explicitly defined in an eddy current context 

FORMULATION 

In a static problem, the directive is to replace all magnetizable media with a skin of surface current as depicted in Fig. 1. 
This skin of surface current once determined represents entirely both the external and internal field effects properly of the 
original medium. In post processing, the entire field of space is represented as being occupied by air. All field calculations 

B, 

Air 

G(rj-)=- ln(R)/2K 

B, 
Interface r 

^^ZJ 
Air 

Air K(rsr) 

(b) Modified problem- 
(a) Original Problem surface current on 
with ferrous sub- interface with no 
region. ferrous region. 

Fig. 1 A static formulation conceptual approach, replacing the nwgnfltt7aMemedm with a skin ofsinface current envelopiiig a "sadc of aii''. 
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are represented as a superposition of the field sources, the effect of the magnetizable medium being to simply add an 
additional set of sources which are now represented as a skin of surface current Assume that B0 represents the effect of all 

impressed fields upon the problem. The magnetic field anywhere in space would then be represented as 

Sir) = B„(r) * n, jVx K^GfrsW. (I) 

B0 COS((Bt) 

Hi 

G(rj-)=- rn(R)/2jc 

Air B0cos((Bt)// 

(*"'   ^>C=>     K-^rJi 
(b) Exterior Solution 

Air 
G=Ko(kR)/2x   >-»-x   - 

(a) Original Problem k^-touo    ■/ \ 
with ferrous, conducting \   Jl;¥ 02 * 
sub-region. ■ 

(c) Interior Solution 
Fig. 2 Representation of an eddy current problem separating it into a lacea%periraeter of surface cunent for the exterior sohdion 31^ a separate su&cecuiTeiil 
for the interior solution. 

Note that the Green's function in this problem is that of the external medium, which is normally air. In a two dimensional 

problem the Green's function would simply be —        . The reader should convince himself that indeed the normal 
2n 

component of magnetic field density is assured to be continuous from this starting point The same Green's function applies 
to all of space. The problem condenses to insuring the continuity of tangential H across the interface, 

»x||ff|| =nx(ii2-HJ = 0. (2) 

It is noted that the evaluation of the intergrand in (1) as the point R moves to the boundary is determined by noting the 
principle part of this integral as 

/v,^Gl M u_. jtß&U^ {£* (3) 
s' 

Combining (1) - (3) yields the result 

rg{rf) dBQ^Xb' + tijhjjt) = . ^A (4) 
f dn 2^u, -uj u«, W 

Linear basis functions are assumed for the unknown surface current K and a standard Galerkin approach used to determine 
the unknowns. The local error in the tangential H field is easily computed in terms of the surface currents. A typical source 
of the error incidentally is the failure to adequately discretize the interface; additional error accrues due to numerical solution 
accuracy. The discontinuity can be thought of as a new surface current an error current defined as 

K,=6*\\B\\. (5) 

The error in the magnetic field can now be approximated using 
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««nJW = /v* tyHXrrW. (6) 

Indeed with this surface current determined, it is straight forward to predict forces, torques, and a number of other global 
quantities. For example, the force on a given object on which both the primary and error surface current is known becomes 

F = fK*B ds± f Ke*B dS. (7) 

EDDYCUBRENTS 

In a time harmonic problem, the formulation becomes slightly more complicated in that a common Green's function cannot 
be used throughout space. The original problem as shown in Fig. 2 must now be broken into two isolated problems. The 
medium having in general some permeability u and conductivity p- must be represented as far as the exterior solution is 
concerned with an external equivalent skin of surface current. A secondary skin of surface current just inside the interface 
must also be incorporated to represent only the field interior to that regioa The exterior and interior field is represented 
respectively as 

Bt=B0 + u,jVr J^G, (r,r')ds' (8) 

%)=jVx[£,(r)G2(r,r'j]<iS'. 
(9) 

As the point R moves to the interface, the integrands on the right-hand side of (8) and (9) become in that limit 

/V*  K, ir') G,(r,r<)ds1 ^^ = j*, i|l<fc + 5. m 

jVx  *2(r')G2(r,r')<fc'L^« = JX-^A - -f- (11)  I 

is again necessary to enforce the boundary condition in (2); this yields the condition 

B*B0      ,    dG,      .   dG,      K, + K- 
  + (K,—!■ - [K,—2- + -2—f2 = o. 

u,       J   ' Sn     J ^ en 
(12) 

What remains is to enforce the continuity condition on tangential E, that fjx|£| = o. Since Eis related to thevectorpotential 
Aas 

M = - Vf - ycal, (13) 
This boundary condition can now be imposed in terms of the vector potential A. Note that in two dimensions the scalar 
potential <p can be set equal to 0. Sometimes this is referred to as the modified vector potential solution. This inherently 
assumes a coulomb gauge in which V\a = 0. The vector potentials in both regions 1 and 2 can be represented as 

Ä, = A0 + u, JKfit) G, ir,') ds1 (M) 

j' 

I2 = u, fty) G2 (r,1) ds'. (i5) 

s1 

Incorporating these equations into (13) yields the result 
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]W Ä0 + u.JK, Gfi.r^ds - Mj/^r^G^r.rVs' = 0. (16) 

B0=cos (5) t) a, 

A f=60Hz . 

Fig. 3 Thin shell conducting sphere problem. 

In three dimensions it is also necessary to impose the constraint of the gauge, i.e., that V-Ä = 0. In a double-layer 
formulation such as this, the continuity of normal B is no longer inherently enforced. Thus errors can accumulate both in 
jumps in tangential H and normal B. The two types of error sources associated with these discontinuities are 

K, = i?x||ff|, <s'm = irIB|. (17) 

Here it is clear that the magnetic surface charge oj must be employed as an additional error source due to the discontinuity 

of normal B. The error term describing the inaccuracy of the force prediction is now composed of two contributions due to 
both of these sources as 

Pt = f<£*ä * a'mB)ds. (18) 

Equation (17) correctly infers that the H is equivalent to a new kind of current on the interface and the discontinuity in B is 
equivalent to a new kind of surface charge. However this would force a new formulation inside the code, and therefore would 
not be an efficient means of calculating the error quantities. In practice with an eddy current problem, it has been found that 
this discontinuity in normal Bis very small. The primary contribution to the error comes from a discontinuity in the tangential 
component of H . An alternative therefore to (17) would be to seek an error current just external and just internal to the 
conducting body's interface as in the original problem. The governing equations for these two contributions to the error 
current would be 

.-,   ^dGArj1)     ,     ,_,   , 3G,(/y')    , 
JK'ir1)     '        ds' - feV)    2       ds' 

*,' ♦ % 

Bn 
= - äX|ä1I;  r& 

j<o [u, JK,' G, (r,') ds' - Uj f% G2 (/y') &'] = 0. 

(19) 

(20) 

Rather than employ (18) with this modified formulation to determine the error in the force computation, it can be computed 
directely with the external error current^ as 
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f. • ftxS,*. (21) 
r 

A quantification of the accuracy of the error force prediction guaranteed by (21) will now be examined. 

NUMERICAL RESULTS FOR A TIME HARMONIC PROBLEM 

Fig. 3 shows the first problem examined in the prediction of these error fields. A conducting shell sphere having a 
permeability of 1000 and a conductivity a = 1.67 x lO^U/m is stimulated by a vertical 1T field oscillating at 60 Hz. Because 
the Galerkin formulation is employed, the jump in tangential H must be determined at three points over any given element, 
with a Gaussian integration performed over that element to solve equations (19) and (20). Because these equations are 
identical in format to (12) and (16), no new matrix need be defined. This translates mto an immense savmgsifa direct solver 
is used, and a reasonable one if an iterative solver is employed since the set up and preconditioning need not be repeated. 
Because the surface currents are computed using linear basis functions there are in tact at least three options for actually 
formulating the surface currents to bound this error. 
1. Use a linear basis function as directly implied by fix||fl|. 
2. Use the largest value over any element unless the sign changes. 
3. Use the absolute value over any element and assume the sign is always positive. 

The reader might appreciate the fact that these error currents typically oscillate due to numerical inaccuracies implied both 
by the basis functions chosen and the numerical handling within the computer. Option 1 yields an approximation to the error, 
but does not bound it Option 2, wherein the largest value over any one element is employed unless a sign change occurs, does 
give a much better approximation to the error and usually bounds that error. What is implied is the following: If the surface 
current for the left edge is -10 and that for the right .„, ' j -15, -15 is chosen as the equivalent service current over the whole 
area. By contrast Option 3 for the same example would dictate a choice of+15 for the surface current over the entire element 
This choice does give a better bound for the error Lot usually over-estimates it Option 3 is a better indicator for the actual 
bounding of the error than is option 2 for time harmonic problems. 

Table 1 shows the results of the error field calculations for a thin shell conducting sphere placed in a 60Hz, 1 Tesla field. 

Alumbum Shell 

^- -^   b«69 85cm 

/V <>N 
/   \      \ 
/ S*Wk 

a - 57.15 C!£».| 

Bcos(at);f=60Hz 

Fig. 4 Felix shell cylinder. 

The errors commensurate with an option 1 assignment for the jump in tangential H over any element as well as an option 3 
assignment follow in columns 5 and 6 respectively. Column 4 represents what is close to an analytic approximation to the 
solution, one which was obtained by using an extremely large number of unknowns. It is clear that an option 1 assignment 
of the jump in tangential H over any element yields too low an approximation to the error. 
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Fig. S Percentage field error computed along the x axis for different element densities. 

Fig. 4 shows the second problem considered, the Felix shell cylinder. Fig. 5 shows a prediction in the field along some 
line and some error as indicated The finer density demonstrates a much lower field prediction error as expected. The 20 
element distribution predicts a force on a quarter of the cylinder of Fx = -333.34 N and Fy = -474.99 N. The analytic force 
predictions were Fx =-333.433 N, and Fy= -466.7166 N. 

Table 1 THIN SHELL CONDUCTING SPHERE INNER RADIUS = 
TESLA VERTICAL FIELD. 

0.99m, OUTER RADIUS = lm, p, - 1000, a = 1.67 x lO'Mho/m, f = 60 Hz DJ A1 

* elements X 
calculated (close to analytical) 

error optical error option3 

20 0.5 0.90E-03 0.24E-02 0.00138 0.00861 

20 0.10 35.78 34.91 0.0827 0.1084 

20 1.1 0.8205 0.815 0.000963 0.00504 

40 0.5 0.24E-02 0.24E-02 0.000153 0.003688 

40 0.10 34.6 34.91 0.01081 0.04604 

CONCLUSIONS 
A technique for approximating not only the size of the field error, but also that of force and torque errors has been 

suggested. Although the technique is not rigorous, and violations to the bounding can be demonstrated, the technique does 
offer a reasonably close approximation to the field uncertainty at any point in space. The examples here are two dimensional; 
the approach has equal validity to 3 dimensions. Perhaps one of the greater benefits of the technique is that no new matrix 
problem need be defined and solved; the same solution matrix is used both for this primary field and secondary error field 
calculations. Furthermore, the technique offers the advantage that when global quantities such as force and torque are required 
the technique has a higher accuracy in bounding the error even as the number of elements is radically altered. 
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Abstract—Residual error bounds are derived for solutions of a Fredholm integral equation of the first kind. A simple two- 
dimensional scattering problem is used to illustrate and compute the error bounds. The problem is solved by the method of 
moments using the usual Galerkin method and a least square method based on the error bound. Two sets of basis functions 
are considered: rooftop and step functions. In the case of rooftop functions, the least square method leads to better and more 
stable numerical results when compared to the Galerkin method. 

1.   INTRODUCTION 

1.1. Generalities 
We consider the following linear operator equation 

Cf = S (1) 
where/and g are complex functions belonging respectively to the domain D and range R of C. The function g is known (by 
an exact expression or by measurements), and the function/is the unknown. £ is a linear operator with D and R in a vector 
space Jf: 

£■: D->R 

We also consider spaces of functions, X and their duals X', with the following duality pairing: 

(•|-):      XxX'->C 

(K,V)H>(«!V) O) 

such that (whenever the expressions make sense): 

(«|v) = (v|«), (a,«, +0,«, |v) = a,(«, ^-Ha^ |v), |«f = (u\u)>Oand (« = 0) <=> ||«f = 0 

where u, u,, u2 are functions of the space X, v is a function of X\ and a, and a2 are complex scalars*.  A bar 
(4) 

over an 

The letters o.e. above the equal sign denote equality almost everywhere, that is that u differs from 0 at most on a set of 
measure zero. 
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expression denotes the complex conjugate. If both u and v are in X, the duality pairing coincides with a hermitian inner 
product on X2. In our concrete example below, we shall use the well-known product used to confer to Lif its usual structure 
of Hilbert space: 

(IW XXX'-^C 

(«,v)H>(«|v)K0 = ju(*M^ic (5) 

And finally we need the adjoint operator C * 

(6) 
VI-^V 

such that 

V(«, v) e XX X',{Cu\ v)s,„ = (M|^V)RO (7) 

In our following simple example of a scattering by a strip, as in many other cases, the interest is more in the calculation of 
some other physical parameter, rather than in purely knowing/. Let us call F the parameter to calculate and express it as 
the following functional of/ 

F = {&) (8) 

Since feD, reD', and we also seek q in R'such that 

Üq = r (9) 

This last equation constitutes the adjoint problem - to the direct problem (1). Ultimately, the purpose of the present paper is 
to derive an upper bound of the error made in the evaluation of F defined in (8). And, as we shall see further, obtaining an 
error bound on the parameter involves both problems. 

1.2. Residual 
In general, we approximate/and q by their projections, /* and q" to a subspace of basis and testing functions respectively: 

f*=%a^t   and    qT^ßp, {W) 
id ;=1 

where the complex coefficients es, and ßj are to be determined by some method in order to approximate the solutions/and g 
in some sense. We denote by e/ and et the respective errors of the approximation: 

«/=/*-/   and   e, = qv-q (11) 

and we refer to the following functions as residuals of the operator equation and its adjoint: 

Lef=Cr-£.f=Cr-g    and     Öeq=Öq">-Öq = £q°>-r (12) 

These residuals are useful in the approximation of the parameter F, since its stationary (or variational) approximate form is 
given by: 

F"={r\r)+(g\q")-{r\£}q-) = F-(Cef\eq) (13) 

In this paper we shall consider two separate methods of computing the aforementioned OS, and ßj coefficients for a given 
illustrative problem; we shall use the Petrov-Galerkin method (method of moments with identical sets of basis and testing 
function) and a least square method minimizing a norm of the residuals. In both cases we shall look at two different sets for 
the basis and testing functions, piecewise constant (step functions) and piecewise linear (rooftop functions). 

f U is the space of square Lebesgue-integrable functions over the real line. 
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2.   SIMPLE ONE-DIMENSIONAL PROBLEM 

2.1. Scattering by a Strip 
In order to evaluate error bounds Involved with a specific operator equation, we now consider the simple problem of 
scattering of a time-harmonic electromagnetic plane incident wave by an infinitely long, perfectly conducting, strip (of 
width 2a) in free space. 

The incident wave is TM polarized, whose direction of propagation is at an angle $ with the strip, as shown on Figure 1 
below. For the physical parameter of interest in this case, that is the expression as defined above in (8), we choose the far 
field of the resulting scattered wave, at an observation direction q>, with respect to the strip, also represented in Figure 1 
below. 

e, 

Figure 1: Simple scattering problem. 

This example is the same as that considered in [1].  The incident wave (omitting the time harmonic factor exp(ja)) is 

field results: 

F' = F'u = u F p-^(*cos«,i+5'si»«,i) T   _,.  r 
*-"     ^z"z    "z^o* .  A surface current density is induced on the strip:     s    uzJst, and a scattered 

E°=E*zuz=uz 
-mjs{x')H^{k4(x-x'f-y

2)dx] (14) 
V     4 a ) 

where Q. denotes the strip (which occupies the interval [-a, a] in the xy plane) and r70
<2) is the Hankel function of the 

second kind of order zero. By enforcing the boundary condition on the strip (total E-field E'z + Ez vanishes), we obtain the 
integral equation: 

jf(x')H™(k\x-x'\)<h' = g(x) (15) 

Q. 

where 

,W = «-'-*   and   /W = fe^W      f0r*ea (16) 
[0 forxgfl 

Equation (15) is in the form of (1) with the following integral operator: 

CM. = J h(x')H™ [k\x - x'|)<fc' (17) 

The adjoint operator with respect to (5) is then: 

£h = J Kx-)Hl,l) [k\x - 4<£c' (lg) 

where Hf is the Hankel function of the first kind, and is equal to the complex conjugate of H0
<2) for real arguments. 
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The far-field expression for the scattered field is: 

where r is the function: 

'W _ e (20) 

This completes the necessary settings for our problem. 

2.2. Sobolev Spaces 
It has been shown (e.g. in [2], and also in [3], [4] & [1]) that Sobolev spaces of fractional order (n+'/i) are the appropriate 
setting for studying the functions involved. The reader is referred to these publications, as well as [5], [6] & [7] for a 
detailed treatment of Sobolev spaces. We shall make use in the following of the Sobolev space of order Vi and its dual, of 
order -Vi. In particular, [1] shows that the error between F and F" is bound by the following: 

\F*-FH£eA44x£efiMe<\L (2D 
where % is an extension operator extending functions defined on SI to the entire real line. The extension must be done in a 
smooth enough manner that the resulting functions belong to fl^OR), the Sobolev space of order Vi. A norm and inner 
product of J!f*(R) are given by (22) and (23) below. They vary from the usual norm given to Sobolev spaces by the factors k 
& 1/27T, this difference allows us to make the expression consistent with its physical dimensions; it also leads to a tighter 
bound. These norms, however, are equivalent to the usual ones (obtained by replacing the factors by unity), and then- 
treatment is similar to that found in the aforementioned literature. 

Now, one further step is useful; the functions we deal with are mostly in Sobolev spaces If {Si), rather than in if (R). And, 
typically, the functions that we deal with that belong to ff(R) are extensions of functions defined on D. In particular, the 

functions of our error bound are fl*(R) extensions of Cessna £?eq, and both functions are only known on the domain SI. 

The intuitive extension operator would be to truncate the function outside of Q, unfortunately, this produces a discontinuity 
and the resulting function no longer belongs to fi"(R). Another straightforward operator is to transition linearly to zero, 
over an interval T, as detailed by (24) below and shown on Figure 2. 

The latter extension was used in [1] and led to good results. It is however a little cumbersome to evaluate, and leads to 

further difficulty in a multi-dimensional case.   In principle, the best approach would be to minimize p£fJ  „and 

pfCfij L   > over *H possible extension operators #, thus obtaining a norm - as impractical as it may be to compute - on 

fl^fl). We may denote that norm: inf Q#<||K y ■ We now wish to find a norm that involves only integration over Q, like 

inf H^uL v, but that is practically computable; the extension defined in (25), and represented in Figure 3, will lead us to 

such a norm. 

The inner product and norm in !?"(¥£) ate referred to with the subscript R,V4: 

*)-v(*o))  j_ j_ 
(22) 

/ I \         u i \     .   1   f ? ("(*) ~ "(*o ))(v(*) ~ v(*o))   ,    , 
H

V
>B.* =%I

V
)R.O

+
T-J )- T|5 '-dx-dx0 

l|2 
HIB.K ~ *H"h.o T 7- J J —j a <"' <"o (23) 
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2&" = i 

u(x) 
«(a) 
r 

«(-a) 

(a + T-x) 

Vxe[-a,a] 

Vxe]a,T+a[ 
(24) 

r 
0 

(a+T+x)       Vxe]-T-a,a[ 

elsewhere 

Figure 2: ^,u, linear tapering on a function K defined on Q=[-a,d\. 

Asym™ 

u(x) 
(2a-x) 

(2a + x) 

u(2a - x) 

Vxe[-a,a] 

VJC e]a,2a[ 
(25) 

0 

u(—2a-x)    Vjce]-2a,-a[ 

elsewhere 

Figure 3: ;tJ>-iH, symmetrical extension with linear tapering on a function u defined on £l=[-a,a]. 

Estimations of the extended portions of the norm lead to the bound [8]: 

2 
NIR^IMI^T 

«     / ÄDO        |X-X0| 
(26) 

This last norm is certainly more convenient, since it does not require any type of extension outside of £2, however, it is still 
cumbersome to compute. The trouble comes from the fact that we need to evaluate a double integral and that the integrand 

has some sort of singularity 11/ |x-x0| I. A remedy is to try to bound the norms above by H' norms. In particular, [1] 

showed that when the function a has an integrable derivative: 

Ik" II 
•HnK ■ C,i"'=44la.o+2! 

dx\\ M. (27) 

Note that we denote that norm with the subscript R,l4", because that norm uses the I& norm of the function and of its 
derivative, thus resembling a norm in the Sobolev space of order 1. Still the product of the two does not appear in the usual 
norm of H'(M), which is the reason for the use of the notation bis. Similar bounding techniques to those which led to (26) 
give us [8]: 

IM^I<H2*+^Mao+(2H 
2-N/2\ „2   . u grJrfaB2 

(28) 

which is a norm on the Sobolev space ff'(£2). The latter norm also has the precious advantage of having a straightforward 
associated scalar product (unlike JuQs j» ). 

We now have an assortment of norms, ||«|B ^, |Hloj£> NIB,I* • Hn,i mat are increasingly more convenient to compute, 

unfortunately, they also lead to decreasingly tight bounds - we trade numerical ease of calculation for tightness of the 
bound. 
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3.   COMPUTATION OF THE BOUND 

3.1. Petrov-Galerkin method 
We now consider more particularly the Petrov-Galerkin method to find an approximation to our problem. 

The well-known method leads to the following equation*: 

Which is resolved by matrix inversion. 

(29) 

We take in particular the following two examples of basis functions: piecewise constant functions and piecewise linear 
functions as represented below, so that the coefficients of each matrix can be evaluated analytically5. 

Figure 4: Piecewise linear basis functions 
(rooftop functions). 

Figure 5: Piecewise constant basis functions 
(step functions). 

The advantage of step functions is double, simplicity of calculation in the integration of the Hankel function, and 
convenience of the Toeplitz matrix in the evaluation of the inner products. Nevertheless, we still consider the rooftop 
functions for two reasons. Firstly, it seems that, intuitively, they might lead to a better (slightly smoother) approximation of 
the surface current on the strip. Secondly, and most importantly, certain more general problems will require continuous 
functions (such as rooftops) if there are any transverse currents in the x-direction, like for instance for an incident wave in 
TE mode. We should also recall here that, in the Galerkin method, the three terms used to evaluate parameter F, in the 
right hand-side of (13) are equal, therefore it is sufficient to evaluate only one of these terms. 

Results are plotted as a function of the number of substrips, JV, in the following Figures, for step functions, and for rooftop 
functions. Three of the four norms defined above are plotted (for faz=0.1). 

err    rr.—r ■ ■ -   .■   .—■ ■ n err 
0.045 

0.04 
0.035 
0.03 
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0.015 
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0 

•J     1                              Step functions 

h\J                                        Rooftop 
Si X 

l/\ 

R.1/2 
£1,1/2 
R,1"* 
R.1/2 
Q.1/2 
R,1»" 

 . 

1         \                   ^^ 
■ 

^""                            — "" "I 

10      15     20     25     30     35     40      N 5      10     15     20     25     30 

Figure 6 & 7: Error bound err for Galerkin method with step functions and rooftop. 

35     40 

* We use the notation [[W(j]]Wxjv for an N by N matrix of elements mtJ,ie{l,..,N},je{l,..,N} and [v,]„ for an 

AT-dimensional vector of elements V;,ie{l,..,iV} - that is a 1 by N matrix. 
5 Step functions lead to a double integration of the Hankel functions, and rooftop functions lead to a quadruple integration 
(after integration by part). We express these in terms of Hankel functions and of their first primitive which make use of 
Struve functions. Formulae for computation of all these functions are found in [9] & [10]. Matrix inversions are computed 
by Toeplitz inversion or by LUD decomposition, both found in [10]. 
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We cannot help but notice the poor result of rooftop functions compared to step functions - our intuitive feeling expressed 
above was wrong. Several papers that make use of the method of moments briefly allude to this puzzling result, without 
further comments. A few papers, however, such as [3] and [11], [12] comment on the phenomenon, even though only [12] 
attempts an explanation. In [13], Druchinin also attempts an explanation, arguing that the longitudinal direction of the 
current needs one more degree of smoothness than the transversal in order to obtain the best numerical results. Another 
interesting fact is that [3] also shows that when the singularities are taken into account at the edges of the strip, then rooftop 
lead to better results than step functions. All in all, it is difficult to find a thoroughly convincing explanation for that 
phenomenon, and it seems that we simply have to accept it 

We also note that rooftop calculations seem more unstable than those for step functions, perhaps due to the aforementioned 
phenomenon, or perhaps due to the added complexity of the numerical calculations. 

In conclusion, although the Petrov-Galerkin method leads to acceptable results, it can exhibit instabilities in the case of 
rooftop functions, and we will require a better solution for the TE case. This is the motivation to explore the other method 
of this paper, the least square (LS) minimization of the error bound. 

3.2. IS method 
We now consider another method of calculation of the a, and ßj coefficients, by writing a variational equation on the error 
bound. We should emphasize here that even though results of the error bounds are expected to be better (since, by 
definition, we determine the coefficients to minimize the bound), the actual error may not be. Minimizing the bound of the 
error in one of the norms used above sometimes causes an increase in the bound computed with another norm and may have 
a similar effect on the actual error. 

We now choose a norm from among the ones we detailed earlier [8], say for the purpose of the following derivation R,H, 

and we write the variational principle on ££e J     and bf^e        as follows. 

VpeQ,..,N},       ^     *~0   and        ^    * =0 (30) 

This leads to 2N real equations, or JV complex equations for the ax = x; + jyi coefficients, and similar conditions on 

jX£ eq\L y win ?ive us toe A coefficients. Finally, in a similar manner to earlier, we can express these conditions by 

matrix equations: 

[[(*£?>,• |*£?>,}HK]W •[«"]* =[{*£*>, |*«}R,K]« (31) 

tK*£V.k£V;)R.x
]w[j8~]» ^VIH^]* 02) 

Similarly to Galerkin method, the linear system is solved" and the resulting coefficients allow us to calculate the parameter 
and the error bound. The same equations can be used with our Cl,Vi duality pairing or with £2,1. Results are plotted on 
Figure 8, for rooftop functions; comparison to their corresponding Galerkin case is immediate, the LS method leads to 
better and stable results. Interestingly, [14] favors the Galerkin method for stability, but that may be because the spaces 
considered for that LS method are not ff**4, nonetheless, in the case of rooftop functions, our computations clearly show the 
superiority of the LS method. 

4.   CONCLUSION 

By example of a simple scattering problem on a strip, we evaluate the error bound on the far-field pattern of a scattered 
plane wave. The error bound is expressed in four different norms, in the Sobolev spaces of order one half or one. Firstly 
the Petrov-Galerkin method is used with step functions or with rooftop functions as basis functions. The latter turns out to 

** Again, step functions lead to a double integration of the Hankel functions, and rooftop functions lead to a quadruple 
integration. Matrices are Toeplitz for step functions, and Hermitian in both cases. 
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be numerically unstable and leads to poor results of the error bound. Secondly, a least square method is used on one of the 
norms derived. Step functions lead to similar (yet still slightly better) results than earlier, rooftop functions, however, lead 
to an impressive improvement, in stability and in the value of the bound, leading to our best results. 
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Figure 8: Error bound err for LS method with rooftop 
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Abstract: 

In this paper, we examine the eigenvalues and eigenvectors for the matrices resulting from 
simulation of planar structures using the electric field integral equation (EFIE). A number of 
interesting features peculiar to this equation are observed. The eigenvalues fall into two distinct 
groups at low enough frequencies. These two groups of eigenvalues are associated with the zero 
curl and divergence spaces of the basis functions, as has been observed by other researchers. 
We give a number of examples showing this separation, and discuss the poor conditioning that 
results. We also observe how the low frequency solution is dominated by a few modes. Finally, 
we discuss why sparsification of the matrix sometimes works, even though the condition number 
can be quite poor. 

Motivation for the Study 

The moment method based on the electric field integral equation (EFIE) is on the most popular 
methods in use today for the numerical solution of planar electromagnetic problems. In fact, it is 
the numerical basis for most of the commercial electromagnetic moment method products today. 
Despite the method's popularity and demonstrated usefulness, there are a number of well known 
difficulties inherent to its use. These include poorly conditioned matrices resulting from the 
discretization of the equation, difficulties in maintaining accuracy of solution at low frequency, 
and relatively poor performance of iterative techniques in solving the matrix equation. 

Conventional wisdom for these problems has been that the matrices are poorly conditioned 
because the EFIE is an integral equation of the first kind. Such equations have notoriously poor 
condition numbers. Therefore a poor condition number is to be expected. Furthermore, any 
iterative technique converges at a rate proportional to the size of the condition number. Therefore, 
systems with large condition numbers, as is the case here, should be expected to perform poorly 
when iterative methods are used. However, this does not explain the poor performance at low 
frequencies. Naively, we would expect the condition number of the problem to get worse as the 
frequency goes up, not down. Therefore, we decided to examine the structure of the integral 
equation and the resulting matrices more closely. 

We also wished to better understand why some researchers have been able to make the matrices 
sparser by converting them to different bases, for example wavelets, and then thresholding the 
matrix to make it sparse.   This results in a system can be solved much faster, as there are 
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fewer elements in the matrix. The problem with this procedure is that the wavelet matrix is an 
orthogonal basis transformation which leaves the eigenvalue, eigenvector structure of the matrix 
intact; the condition number of the matrix is not changed. Normally, we are not allowed to discard 
values from a poorly conditioned matrix, even though some of the values are much smaller than 
the largest ones. 

Therefore, we decided to examine a number of canonical microstrip structures to see if we 
could understand the issues mentioned above. In so doing, we have followed the closely the work 
of Vecchi et al. [1] In their paper, they demonstrate how the integral equation's basis can be 
subdivided into two subspaces, and how this can be used to advantage in preconditioning the 
system. Essentially, this paper presents a number of simple canonical structures and shows how 
they fit into the ideas presented in Vecchi. 

Results 

We examined a number of canonical structures: through sections of microstrip transmission 
lines, microstrip bends, and similar simple discontinuities. For example, a microstrip line is shown 
in figure 1. The line has been divided into a number of cells. The current is approximated by the 
well known rooftop basis functions. Each one of these rooftops has one unknown. Essentially, 
each interior edge can be associated with a rooftop. In addition, the two ports have unknowns, 
corresponding to half rooftops. The matrices for the resulting structures were then examined. 
For example, the magnitude of a matrix corresponding to 123 unknowns is shown in figure 2. 
(This corresponds to a strip discretization of 3 cells across and 24 cells long.) Notice that the 
matrix appears to be sparse. The diagonal elements, the largest elements in the matrix have 
maximum values of 1. The smallest elements in the matrix have values of W~°. This sparsity 
occurs because of the rapid falloff of the values in the matrix. 

Unfortunately the condition number is quite large for these matrices. The matrix shown in 
figure 2 has a condition number of 3x105. It is therefore not possible to discard small elements. 
This is shown in figure 4, where we have set small matrix elements to zero. We see that the 
solution for the current rapidly becomes corrupted. 

The magnitude of the eigenvalues is shown in figure 3. The condition number is the ratio of 
the largest to smallest eigenvalue. Notice that the eigenvalues fall into two groups. At first this is 
a surprising development. Normally, the eigenvalues would decay toward zero at a uniform rate. 
The separation of the eigenvalues into two groups is explained in the work by Vecchi et al. [1] The 
current can be broken into two groups, a zero curl group and a zero divergence group. The most 
common realization of these two groups is in a "loop" and "star" separation. The zero divergence 
space gives very small eigenvalues, in that the eigenvectors correspond to magnetostatic solutions. 
Such solutions can exist in principle for any conductor. The zero divergence eigenvalues are the 
second group of eigenvalues in figure 4. A second thing to notice is that the first group of 
eigenvalues, the zero curl eigenvalues have some small entries too. These values correspond to 
the dominant electrostatic modes. We will give further examples of this grouping into two sets 
of modes. 
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Figure 2: Absolute value of a matrix elements resulting from a structure similar to that 
shown in figure 1, except with 133 unknowns. The matrix looks sparse, but the condition 
number is very poor. 
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Abstract 

Dense systems of linear equations can be efficiently solved with modern iterative meth- 
ods. In many cases, the linear system needs to be preconditioned to guarantee fast con- 
vergence. This article presents two case studies, a volume and a surface integral equation 
for electromagnetic scattering. Convergence of the iterative methods is analyzed together 
with the eigenvalues of the coefficient matrices. For the surface integral equation, a sparse 
approximate inverse preconditioner is implemented. Finally, the possibilities of computing 
the matrix-vector product with fast multipole techniques is discussed. 

1    Introduction 

In computational electromagnetics, approaches based on differential equations have been in 
many cases preferred over the use of integral equations because the latter lead to very expensive 
calculations involving the solution of dense systems of linear equations. However, recent devel- 
opments in iterative methods and in fast multipole techniques have much increased the range 
of applicability of integral equations in electromagnetics research and industry. 

The computational time required by the direct methods for solving dense linear systems (with, 
e.g., LAPACK) increases rapidly with the size of the linear system. Moreover, the memory 
required to store a dense matrix quickly becomes a bottleneck, restricting the size of the system 
to maybe 30000 unknowns for present supercomputers. 

Iterative solvers can reduce both the computational complexity and memory requirements of the 
solution of dense linear systems. With a good preconditioner, the iterative solver can converge 
with much fewer iterations than the number of unknowns. If this is the case, the iterative 
solution becomes superior to the direct one. 
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Iterative Krylov-subspace methods only access the matrix by a series of matrix-vector products. 
Thus, the coefficient matrix need not be formed explicitly, and only its effect on a given vector 
needs to be computed. This offers some interesting possibilities for further reduction of the 
solution time. With modern methods for computing the matrix-vector product, such as the 
fast multipole method or the FFT, dense linear systems of millions of unknowns can be solved 
efficiently. The memory requirements of such schemes only grow linearly with the size of the 
system. 

This article gives an example of a volume and a surface integral equation for electromagnetic 
scattering. The use of various iterative solvers for these equations is then discussed. Especially 
the relation of the eigenvalues of the coefficient matrix and the convergence of iterative solvers 
is considered. Finally, some experiences on the use of the fast Fourier transform and the fast 
multipole method are reported. 

2    Integral equations of electromagnetic scattering 

In this section we will describe a volume integral equation formalism and a surface integral 
equation formalism for electromagnetic scattering. 

The volume integral equation is of course more costly than a surface integral equation, because 
of the greater number of unknowns. However, it allows a simple description of the scatterer 
in terms of cubic computational cells, and it offers the possibility of computing scattering by 
inhomogeneous and anisotropic scatterers. The volume integral equation of electromagnetic 
scattering is given by [11] 

E(r) = Einc(r) + k3 /v(m(r')2 - l)G(r, r') • E(r') <*V, (1) 

where E(r) is the electric field inside the particle, Einc(r) is the incident field, k is the wave 
number, m is the complex refractive index, G is the dyadic Green's function 

G(r,r')=(l + ^)<K|r--r'|) (2) 

and 

*> = SP (3) 

In the above equations, we assume that the electric field has harmonic time-dependence exp — iuit. 

The scattering integral equation can be discretized in various ways. The simplest discretization 
uses cubic cells and assumes that the electric field is constant inside each cube. In our calcu- 
lations we require that the integral equation (1) is satisfied at the centers r,- of the N cubes 
(point-matching or collocation technique) and we use simple one-point integration. 

The simple discretization of the volume integral equation naturally leads to some errors in 
the solutions. These errors were analyzed by Hoekstra and Rahola [9], who showed that the 
magnitude of the error is greatest near the surface of the scatterer. 
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We have also studied the solution of dense linear systems for surface integral equations. We 
have used a new formulation of Bendali et al. [2] who use a boundary flux finite-element method. 
Their scheme is well-posed at all frequencies and it also avoids the use of a free parameter that 
is used in the combined-field integral equation. The formulation uses the impedance boundary 
condition. In the present article we only give examples for a perfect conductor. 

3    Iterative solvers 

Both the volume and surface integral equations lead to a dense system of linear equation with 
complex symmetric (i.e. non-Hermitian) coefficient matrices. Thus they cannot be solved using 
the conjugate gradient method. Instead, non-Hermitian Krylov subspace methods are used. 

We have tested various iterative solvers for the volume integral equation and the complex 
symmetric version of the quasi-minimal residual method (QMR) [5] turned out to be the best 
[16, 13, 15]. It uses only one matrix-vector product per iteration. We found out that if the same 
particle is discretized with increasing resolution, the number of iterations remains constant. 
Note that if multiple right-hand sides are available simultaneously, a block version of QMR [3] 
can further speed up the convergence. 

The convergence of iterative solvers is determined by the eigenvalues of the coefficient matrix. 
In Figure 1 we show the eigenvalues of the coefficient matrix for the volume integral equation 
in the case of a dielectric sphere. Note that almost all the eigenvalues cluster on the line with 
only a few outliers. We can explain and analytically calculate the eigenvalues off the line and 
have a proposition for the eigenvalues on the line [15]. 

Figure 1: Eigenvalues (small black dots) of the coefficient matrix for the volume integral equa- 
tion. The circles represent analytical eigenvalues of the volume integral operator. 
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For the volume integral equation, the QMR method converges nicely even without precondi- 
tioning. However, near some resonance frequencies the convergence can slow down [9]. For 
the surface integral equation, the situation is rather different and there is clearly need a good 
preconditioner. 

We propose the use of a sparse approximate inverse (SPAI) preconditioner. The SPAI concept 
in a factorized from was given in [10]. However, the factorized SPAI only works for positive 
definite matrices, which is not the case here. The version of SPAI adopted in the present article 
is related to the one described in [1]. 

The aim of preconditioning is to transform the linear system Ax = b into a preconditioned 
system 

M2AMxy = M2b, x = Mty, (4) 

so that the new system is easier to solve with iterative methods. In many iterative solvers, the 
left and right parts M2 and Mi of the preconditioner are only accessed through the multiplication 
by M := MXM2. The eigenvalues of the preconditioned matrix M2AM\ are the same as those 
of AM. Ideally, the preconditioner M should be close to the inverse of the matrix A and should 
not have too many nonzero elements, so that the products of M with a vector can be computed 
cheaply. 

Because we use a complex symmetric version of QMR, we are also looking for a symmetric M. 
We are using a version of preconditioned QMR that does not require M to have a symmetric 
factorization (i.e. M% = M2 is not required). In the sequel we only consider preconditioners 
with M2 = I and thus Mi = M. 

Let a symmetric sparsity pattern for the right preconditioning matrix M be given. Now we 
would like to determine the values of M by solving the problem 

min||/-AM||2F, (5) 
M 

where || • ||F denotes the Frobenius norm. Note that this leads to independent least-squares 
problems for each column of M, i.e. 

min He,- - Am.jfF, j = l,...,N, (6) 

where rrij and ej are the jth columns of M and 7, respectively. 

As the coefficient matrix is full, the solution of the above least-squares problems would require 
the computation of full columns or the matrix, which is a rather heavy task for really large 
matrices. Instead, for each column of M, we only pick the rows of A corresponding to a new 
sparsity set that is somewhat larger than the sparsity set for M. 

In the surface integral equation employed, each unknown corresponds to a midpoint in the 
triangular mesh of the surface. The sparsity set for each row of M is prescribed by including 
only the elements corresponding to the kth neighbors of a given node. In the least-squares 
problems, we use the matrix rows corresponding to the (k + l)th neighbors of the node. 
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Figure 2: The left figure shows the eigenvalues of the coefficient matrix for the surface integral 
equation. The right figure shows the eigenvalues of the preconditioned matrix. 

In the left-hand part of Figure 2 we show the eigenvalues of the coefficient matrix for the surface 
integral equation in the case of a perfectly conducting sphere. Note that the eigenvalues are 
located on both sides of the origin, which can cause problems for some iterative solvers. The 
right-hand part of Figure 2 show the eigenvalues of the preconditioned matrix AM. Figure 3 
gives an example on how the convergence of QMR depends on the neighbor level k for the SPAI 
preconditioner. 

In practical calculations we set k to three, which means that a row typically has about 25 
nonzeros and we need to solve a least-squares problem of size 40 x 25 to determine the values 
for the nonzeros. Because M has to be symmetric, we construct the final preconditioner as 
M' = {M + MT)I2. 

In Table 1 we report the CPU times that are needed to build the preconditioner and to solve 
the linear system with direct and iterative solvers together with the number of iterations for 
the iterative method QMR. It can be seen that the number of iterations for QMR grows rather 
slowly when bigger scattering problems are solved. The iterative method quickly becomes faster 
than the direct method. 

4    Matrix-vector product 

When iterative Krylov-subspace methods are applied to dense linear systems, by far the most 
expensive operation is the matrix-vector product. Both the time needed to compute the matrix- 
vector product and the memory to store the matrix grow as Ö(N2) if the matrix is formed 
explicitly. 
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Convergence of QMR with the SPAI preconditioner 
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Figure 3: Convergence of QMR with the SPAI preconditioner. The numbers below the curves 
indicate the level of preconditioner used, with 0 denoting unpreconditioned QMR. 

N "iter 2SPAI TQMR -* direct 

1080 24 5.7 0.5 2 
1920 31 10 1.7 11 
3000 38 16 4 42 
6750 61 36 31 477 
9720 73 52 71 1410 

Table 1: Number of iterations niter for QMR and CPU times (in seconds) on a Cray C90 for 
construction of the SPAI preconditioner (TSPAI), the iterative solution (TQMR.) and for the direct 
solve (Tdirect). N denotes the size of the linear system. QMR was stopped when the 2-norm of 
the initial residual was reduced by a factor of 10-8. 

For the volume integral equation the matrix-vector product can in some cases be computed by a 
3D FFT [6,12]. If the computational cells sit on a regular lattice, the lattice can be enlarged to a 
cube and the matrix-vector product with a cubic lattice reduces to a 3D-convolution, which can 
be computed efficiently with a 3D fast Fourier transform (FFT). The computational complexity 
of the FFT depends on the number of lattice points in the enlarged lattice. The FFT has also 
been used in volume integral calculations to compute the scattering by more than seven million 
computational points [8] 

For the surface integral equation method the FFT is not practical because the surface elements 
do not sit on a regular lattice. 

Another method to compute the matrix-vector product is the fast multipole method (FMM) 
by Greengard and Rokhlin [7]. The FMM is based on truncated potential expansions which are 
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used to combine the field of many far-away computational cubes to a single set of expansion 
coefficients. The use of the FMM in scattering calculations is described, e.g., in [4, 14]. The 
FMM has recently been applied to surface integral equations involving over 2 million unknowns 
[17]. 

The author has analyzed the errors in the fast multipole method when the so-called diagonal 
translation operators are used. This formulation must be used with care if small distances and 
large-order terms of the series expansion are used [14]. In this case the accuracy of the FMM 
can be destroyed by the finite-precision arithmetic of the computers. 

5    Conclusion 

This article has presented two integral equation formulations of electromagnetic scattering where 
the dense system of linear equations has been solved with iterative solvers. For the volume 
integral equation case, the iterative solver converges quickly even without preconditioning. The 
linear system arising from a surface integral equation is preconditioned by a sparse approximate 
inverse preconditioner, which is relatively simple to apply and nicely reduces the number of 
iterations. 

The sparse approximate inverse preconditioner is constructed by solving a least-squares problem 
for each column of the preconditioning matrix. After this, the application of the preconditioner 
is relatively cheap, because it involves the multiplication of a vector by a matrix with roughly 
25 nonzeros in each row. 

The author has used the FFT to compute matrix-vector products by a matrix of almost half 
a million rows and also has some experience on the use of the FMM in scattering problems. 
Future research will consider the application of the FMM to large-scale surface-integral equation 
problems. Also, the work on sparse approximate inverse preconditioners will be continued. 

Acknowledgments: I would like to thank Abderrahmane Bendali and M'Barek Fares for 
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proximate inverse preconditioners. 

References 

[1] G. AHeon, M. Benzi, and L. Giraud. Sparse approximate inverse preconditioning for dense linear 
systems arising in computational electromagnetics. CERFACS TR/PA/97/05, CERFACS, 1997. 
To appear in Numerical Algorithms. 

[2] A. Bendali, M.G. Fares, and J. Gay. Finite element solution to impedance boundary integral 
equation in electromagnetic scattering. CERFACS TR/EMC/97/35, CERFACS, 1997. Submitted 
to IEEE Trans. Antennas Propagat. 

1132 



[3] W. E. Boyse and A. A. Seidl. A block QMR method for computing multiple simultaneous solutions 
to complex symmetric systems. SIAM J. Sei. Comput. 17, 263-274,1996. 

[4] R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for the wave equation: a 
pedestrian prescription. IEEE Antennas and Propagation Magazine 35, No. 3, 7-12, June 1993. 

[5] R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric 
coefficient matrices. SIAM J. Sei. Stat. Comput. 13, 425-448,1992. 

[6] J. J. Goodman, B. T. Draine, and P. J. Flatau. Application of fast-Fourier-transform techniques 
to the discrete-dipole approximation. Optics Letters 16, 1198-1200,1991. 

[7] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys. 73, 
325-348, 1987. 

[8] A.G. Hoekstra, M. D. Grimminck, and P.M.A. Sloot. A parallel fast discrete dipole approximation 
for simulations of elastic light scattering from micron-sized particles. Int. J. Mod. Phys. C. 
(submitted). 

[9] A.G. Hoekstra and J. Rahola. Accuracy of internal fields in VIEF simulations of light scattering. 
Appl. Opt. (submitted). 

[10] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse preconditionings I. 
Theory. SIAM J. Matrix Anal. 14, 45-58,1993. 

[11] A. Lakhtakia and G. W. Mulholland. On two numerical techniques for light scattering by dielectric 
agglomerated structures. J. Res. Natl. Inst. Stand. Technol. 98, No. 6, 699-716, 1993. 

[12] K. Lumme and J. Rahola. Light scattering by porous dust particles in the discrete-dipole approx- 
imation. Astrophys. J. 425, 653-667, 1994: 

[13] J. Rahola. Solution of dense systems of linear equations in electromagnetic scattering calculations. 
Licenciate's thesis, Helsinki University of Technology, 1994. 

[14] J. Rahola. Diagonal forms of the translation operators in the fast multipole algorithm for scattering 
problems. BIT 36, 333-358,1996. 

[15] J. Rahola. Efficient solution of dense systems of linear equations in electromagnetic scattering 
calculations. PhD thesis, Helsinki University of Technology, 1996. CSC Research Reports R06/96, 
Center for Scientific Computing, 1996. 

[16] J. Rahola. Solution of dense systems of linear equations in the discrete-dipole approximation. 
SIAMJ. Sei. Comput. 17, 78-89, 1996. 

[17] J.M. Song, C.C. Lu, W.C. Chew, and S.W. Lee. Fast Illinois solver code (FISC) solves problems 
of unprecedented size at the Center for Computational Electromagnetics, University of Illinois. 
Research Report No. CCEM-23-97, University of Illinois, 1997. Submitted to IEEE Antennas and 
Propagation Magazine. 

1133 



EMCP2 A PARALLEL BOUNDARY ELEMENT SOFTWARE PACKAGE USING A 
NOVEL PARAMETERISATION TECHNIQUE. 

Goran Eriksson and Ulf Thibblin 

Ericsson Saab Avionics AB 
Electromagnetic Technology Division 

SE-581 88Linköping 
Sweden 

ABSTRACT 

The development of a new software package based on a frequency domain boundary element solver and 
novel parameterization techniques is presented. The parameterization technique is introduced to over- 
come the need to assemble and invert the resulting impedance matrix for each parameter configuration. 
The technique in essence makes it possible to obtain the solution as a function of parameters like fre- 
quency and geometry with only one matrix inversion and matrix-matrix and matrix vector multiplication 
involving high order derivatives of the matrix. Comparison with measurements are presented. The soft- 
ware package is developed and validated within the European ESPRIT-HPCN project EMCP2 (Electro- 
Magnetic Compatibility using Parallel Parameterization) where the partners are: Aerospatiale CCR (F)), 
Alenia Aerospazio (I), CADOE (F), Centro Ricerche FIAT (I), COREP (I), Ericsson Saab Avionics AB 
(S), Eurocopter (F), KTH/PSCI (S) and MIP (F). 

1. INTRODUCTION 

Computational Electromagnetics (CEM) has during the last years become a tool that is used more and 
more to solve complex problems in areas like EMC, antennas and radar cross section to mention a few 
examples. This is mainly due to the rapidly increasing performance of computers at a lower cost. More- 
over this development has also inspired the development of new methods [1]. In particular there is a great 
need for simulation tools that can be used at an early stage of a project for virtual prototyping. At that 
stage of a project no objects exists. Therefore measurements, except on smaller parts, are out of the ques- 
tion. In particular so since perhaps several hundreds of different prototypes have to be studied with hun- 
dreds of different parameter configurations. However to carry out such extensive parameter studies 
efficiently we need efficient computational tools. 

The methods used either solves Maxwell's equations in time or frequency domain. Both approaches 
have their advantages and disadvantages. The methods can be approximate like asymptotic high frequen- 
cy methods [2] or uses a numerical method starting from an exact formulation of Maxwell's equations. 
Most of the high frequency methods executes quite fast and can be further improved by straightforward 
parallelisation so therefore we limit ourselves in this paper to direct numerical solutions by discretization 
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of space and time if it is a time domain method. The direct methods can either be boundary element 
methods (BEM) where only the boundaries of the object is discretized or volume element methods where 
a truncated space surrounding the object is discretized [3,4], Although more and more time domain codes 
emerges that either is based on unstructured boundary element meshes or unstructured volume meshes 
[ 1] the classical FDTD method [5] is still one of the most used. Hybrid methods on hybrid meshes where 
for example FDTD is hybridized with a time domain FEM solver on an unstructured mesh are also being 
studied []]. However many of these methods are still on a research level and the computational burden 
is large. The advantages with FDTD is its robustness, the many sub cell models that have been devel- 
oped, the high performance that can be achieved on parallel computers and the fact that it is very easy 
to use. The main disadvantage is the resulting stairstepped approximation of the geometry and the diffi- 
culties with local mesh refinement. This leads to small possibilities to accurately model for example the 
substructure on an aircraft and curved surfaces. Another disadvantage is that the computation has to be 
repeated for each excitation. 

While a frequency BE or FE method models the true geometry very accurately, in comparison with 
FDTD, the advantage with FDTD is that a pulse can be used as the excitation. Thereby we can obtain 
the frequency response in a frequency band by Fourier transform. The FE and BE methods requires a 
matrix inversion, so if the response is desired for many frequencies the inversion has to be repeated many 
times. This can make parameter studies where the response over a frequency band is required very time 
consuming with BEM or FEM in the frequency domain. In particular so since changes in other parame- 
ters like geometry and impedance, also requires a new inversion of the matrix. It is therefore very desir- 
able to find a method by which the solution in a parameter interval can be obtained with only one matrix 
inversion to be able to carry out comprehensive parameter studies and optimization. 

In this paper we present the development of a new software package based on a BEM solver provided 
by Aerospatiale CCR and novel parameterization techniques provided by CADOE that overcomes the 
disadvantage with having to invert a matrix many times to obtain the response in a parameter interval. 

The software is being developed and validated by a concortium in the European ESPRIT-HPCN project 
EMCP2 (ElectroMagnetic Compatibility using Parallel Parameterization) [6]. The concortium consists 
of Aerospatiale CCR (F)), Alenia Aerospazio (I), CADOE (F), Centro Ricerche FIAT (I), COREP (I), 
Ericsson Saab Avionics AB (S), Eurocopter (F), KTH/PSCI (S) and MIP (F). 

In section 2 the objectives of the project and an overview of the software package is presented. In section 
3 the technical aspects are discussed. Section 5 presents the project status and results. Conclusions are 
presented in section 6. 

2. OBJECTIVES AND TECHNICAL OVERVIEW 

The objective of the project is to develop a software suitable for EMC and antenna applications and in 
particular well suited for parameter studies and optimization. For this purpose a frequency domain BEM 
solver and novel parameterization tools were chosen. The BEM solver has been used and validated for 
many EMC and antenna applications. The parameterization techniques for integral equation methods 
have been used by CADOE sucessfully in other areas like structural analyses, see for example [7]. 
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The parameterization technique uses Taylor and Pade polynomials to approximate the solution in a pa- 
rameter interval. The computation of the Taylor polynomials includes the inversion of the resulting ma- 
trix for a given parameter value and high order automatic differentiation of the same matrix. Since the 
solutions are given as polynomials it is very easy to cany out parameter studies within the obtained pa- 
rameter interval and to find optimal solutions. The parameters that have been chosen to demonstrate the 
technology are frequency, impedance and geometry. The frequency is an obvious parameter to choose 
for EMC studies. The impedance can for example be the terminating impedance for a cable or the input 
impedance for an antenna. As regards geometry the connectivity between the nodes has to be maintained 
during the geometrical change which of course gives rise to limitations. The changes that can be carried 
out are however sufficiently large to be of importance. A typical application would be to change the ca- 
ble routing so as to obtain as low currents as possible when a system is excited by an electromagnetic 
disturbance. Another would be antenna positioning and optimization of the shape of antenna elements. 

Since the computation of the polynomials approximating the solution, in a parameter interval, is very 
complex the use of supercomputers is necessary for this part. However since this computation is carried 
out once or relatively few times it is motivated. This gives the most accurate solution and allows the user 
to tackle complex and realistic applications. On the other hand the preprocessing can be carried out on 
a workstation. Moreover the postprocessing including searching for an optimal solution can also be car- 
ried out on a workstation or even a PC since the parametrized solutions are represented by simple poly- 
nomials. This division between a supercomputer for the computation of the polynomials and a 
workstation environment for pre and postprocessing is very practical for the EMC or antenna specialist 
who is not necessarily a specialist on large scale computations. 

The preprocessing is based on I-DEAS from SDRC as regards geometry and meshing. Either a CAD 
model is imported to, and if necessary repaired in, I-DEAS or the geometry is created within I-DEAS. 
The standard boundary element meshing tools in I-DEAS are used. I-DEAS was chosen for the project 
since it is a well known too! used by many companies, the BEM solver was already before the project 
started linked to I-DEAS and CADOE has an extensive knowledge of I-DEAS and have integrated their 
tools within I-DEAS. After the project the software could in a straightforward way be ported to similar 
tools like I-DEAS. The preprocessor also includes a graphical user interface (GUI) where the relevant 
parameters are set. In the GUI, which is linked to I-DEAS, general electromagnetic parameters like angle 
of incidence for an exciting wave, parameters linked to nodes in the mesh and parameters and limits for 
the parameterization is set. 

The datavisualisation is mainly based on I-DEAS but other postprocessing tools will also be included. 
Furthermore the optimization software for the parametrized solutions is also linked to I-DEAS. 

3. SOLVER AND PARAMETERISATION TECHNIQUE 

The BE solver is based on the Stratton-Chu formulation of the EFIE [8]. The geometry can be modeled 
with triangular or line (beam) elements generated with I-DEAS where the line elements often are used 
to model cables or wire antennas. A large linear complex equation system, Z7 = V, where Z is a matrix 
depending on the parameters of the system like geometry, impedance and frequency, J is a vector con- 
taining the unknowns and Visa vector containing the source terms, has to be solved. By inverting the 
so called impedance matrix Z, the unknowns J can be obtained. Normaly the inversion of this matrix 
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has to be repeated a large number of times when carrying out parameter studies. To obtain the solution 
in a parameter interval ./ is approximated by an asymptotic polynomial expansion including Taylor 
polynomials and Pade approximations. The coefficients of the Pade approximation, a rationale function 
of two polynomials, are computed from the coefficients of the Taylor polynomials. Each coefficient of 
the polynomial is obtained by computing the successive derivatives of J, with respect to a parameter p, 
at a given value p0. The higher order derivatives of Z are obtained by using an automatic differentiation 
tool, ADOC, developed by CADOE. The major interest of this approach comes from the ease of use of 
the Taylor polynomials. Even though the computation of the Taylor polynomials can be v^ry complex 
it is only done one or a few times. The Taylor polynomials then allows the computation of J for a large 
set of parameters: 

N   X    (") 

*P«X 
JP0 , N« 
-ZT(P-PQ) 

n = 0 

High degree polynomial interpolation provide oscillating solutions but, for a large class of industrial 
problems, the solution depends analytically on the parameters of the studied structure. It means that the 
Taylor expansion converges to that solution. This is true for the continous problem and the discrete prob- 
lem processed by the computer. 

Moreover, the automatic differentiation tool ADOC, provides exact derivatives of the latter one by dif- 
ferentiating its algorithm. There is no truncation error like for the finite difference technique. To illus- 
trate the analycity of the solution with respect to its parameters, the same binary data representation is 
obtained by a direct computation and by a Taylor's expansion (computed by automatic differentiation) 
[9]. To improve the range of validity for the parameterization different methods will be studied where 
the joint use of variable change, where a variable is replaced by a function, and the introduction of com- 
plex wave numbers is one example. 

To obtain maximum efficiency the computation of the polynomials will be implemented on parallel ma- 
chines. The most demanding part is the computation of the (inverse of the) matrix and its derivatives. 
This is a computation that is well suited for parallelization by using a message passing system like PVM 
or MPI. Furthermore, the storage of intermediary matrices during the computations requires large re- 
sources in terms of memory and disk. Only a parallel system can handle it easily and can deal with the 
required computing power, local storage and high I/O bandwidth. 

4. DEMONSTRATOR APPLICATIONS 

To validate and demonstrate the performance of the software several demonstration cases have been de- 
fined with applications regarding EMC and antenna problems for cars, aircraft and helicopters. To start 
with all industrial partners will study a simple object, i. e. a rectangular metallic box, on which measure- 
ments also are carried out. Secondly a complex and realistic test case will be studied where measurement 
results already exists. Finally a new complex test case will be studied to evaluate the full functionality 
of the software. 
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5. PROJECT STATUS AND RESULTS 

Presently a first serial version of the software with parameterization in frequency have been tested and 
validated for the simple object mentioned in section 4. A parallel version of the code have just been in- 
stalled on a 113 node IBM SP2 at KTH and the tests using parameterization in frequency will start for 
the complex applications described in section 4. First simple tests of the version including parameteriza- 
tion with respect to geometry and impedance are presently being carried out with promising results. 

The simple object developed by CRFIAT is a metallic box with several apertures that can be closed or 
open and with a wire inside. The wire is terminated at the interior walls of the box with variable termi- 
nation impedances. Measurements have been carried out by CRFIAT in an anechoic chamber at CRFI- 
AT. The measured quantities are electric fields inside the box and wire currents in the frequency range 
200 - 1000 MHz. The configuration that we have studied is shown in figure 1. 

Current probe position 

0.9 m 

1.2 m 

2 m 

Fiaure 1. Metallic box. 

In our case the wire termination impedances are 50 ohm at both ends. The apertures have dimensions 
50mm x 500mm. The illumination is broadside to the apertures. In the computations a plane wave ex- 
citation is used. The computed quantity is the wire current at the position shown in figure 1. Two differ- 
ent meshes are used, one with a constant mesh size of 10 cm and the other one with a locally refined 
mesh at the apertures. The locally refined mesh is shown in figure 2. The number of unknowns for the 
10 cm mesh is 3464 and 7383 for the finer mesh. Normally for a general purpose method like this an 
aperture has to be resolved by at least three nodes in each direction to obtain a good result which is also 
seen from the comparison with measurements. 
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Figure 2. Mesh of the metallic box with 1 cm mesh size at the apertures. 

In figure 3 the computed wire current using the non parametrized solver and the measurement results for 
vertical polarization is shown. As can be seen the agreement is very good. In particular if the finer mesh 
is used. 

KroDe current, su unm load, vertical poi. 
0.02 

0.018 

0.016 

0.014 

0.012 

 10 cm mesh 

—  1 cm mesh 

o    Measurements 

250 300 
Frequency (MHz) 

350 

Figure 3.   Wire RMS current as a function of frequency computed for the 10 cm mesh, solid line, 1 cm 
mesh, dashed. The results from measurements are shown by circles. 
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The parametrized version in frequency is still being improved as regards the range of validity so no final 
conclusions can be drawn at this stage. As an example figure 4 shows the results computed with the di- 
rect version compared with the results computed with the parametrized version for the same case as de- 
scribed above. 

X10 
f=340 Mhz, Vertical pol. 

320 325 330 335 340 345 350 355 360 
Frequency (MHz) 

Fisure 4. Wire current computed with parametrized version, solid, and with direct version, dashed. 

The order of derivation is 20 and a good agreement is found between 330 and 350 MHz which yields a 
validity range of approximately 20 MHz in this case. Note that several sharp features are captured which 
demands many computations with the direct solver. It is important to notice that the parameterized ver- 
sion can accurately catch very narrow resonances by one computation which with a direct solver would 
require many computations. 

6. CONCLUSIONS 

Initial tests show promising results for using a parameterization technique for a frequency BEM v 
gives the solution in a parameter interval, for example a frequency interval. The method will be f 
improved te increase the range of validity and impedance and geometry will also be considerec' 
rameters. 
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